首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper explores the finite-time bounded issue for discrete-time singular time-varying delay system via sliding mode control method. A suitable discrete-time sliding mode control law is constructed to drive the state trajectories onto the specified sliding surface in a given finite time interval. Meanwhile, sufficient conditions for finite-time bounded to the closed-loop delayed system are provided in both reaching phase and sliding motion phase. In addition, the finite-time sliding mode controller gain matrix can be solved by using the linear matrix inequalities approach. Finally, three numerical examples are illustrated to demonstrate the superiority and practicability of presented results.  相似文献   

2.
The finite-time stochastic boundedness (FTSB) via the sliding mode control (SMC) approach is analyzed for Markovian jumping systems (MJSs) with time-delays. First, an integral switching surface is constructed. And to make sure the reachability of the sliding mode surface in a finite-time, an SMC law is designed. In addition, the delay-dependent criteria for FTSB are obtained over the reaching phase and the sliding motion phase. Furthermore, in line with linear matrix inequalities (LMIs), sufficient conditions are provided to guarantee the FTSB of systems over the whole finite-time interval. Lastly, an example is given to indicate the validity of the proposed approach.  相似文献   

3.
This paper proposes a novel fast terminal sliding mode (FTSM) control scheme, which accelerates convergence of the controlled system both in its approaching and after reaching the sliding manifold. The novelty lies in the design of time-varying sliding surface without a priori knowledge of the initial system states, so achieving insensitivity to the uncertainty of the initial states. Based on this, we design a corresponding FTSM control strategy, where the singularity problem of conventional terminal sliding mode (TSM) control systems is overcome by restricting the TSM surfaces to non-singular areas. We prove stability and finite-time convergence of the system with the proposed controller. Furthermore, we extend the proposed FTSM control scheme to high-order systems and discuss its application in practical systems. Preliminary simulation results and comparative studies demonstrate the validity of the proposed FTSM control scheme with the designed sliding surface.  相似文献   

4.
The issue of finite-time sliding mode control (SMC) is studied for a class of Markov jump systems, in which parameter uncertainties, external disturbances and time-varying delay are considered. Firstly, a suitable observer-based SMC law is devised so that state trajectory of the system can reach the designed sliding mode surface in finite-time, the gain of the controller is asynchronous to the mode of original system. Meanwhile, the sufficient conditions of finite-time boundedness in the sliding phase and reaching phase are derived by the time partition strategy. Moreover, the gains of the observer and the observer-based controller will be acquired by using the linear matrix inequalities tool. In fine, emulation products are used to confirm the merits of the SMC strategy.  相似文献   

5.
This paper investigates the fractional-order (FO) adaptive neuro-fuzzy sliding mode control issue for a class of fuzzy singularly perturbed systems subject to the matched uncertainties and external disturbances. Firstly, a novel FO fuzzy sliding mode surface is presented. Secondly, by introducing an appropriate ε-dependent Lyapunov function, some H performance analysis criteria are given, which also ensure the robust stability of the sliding mode dynamics. Furthermore, a hybrid neuro-fuzzy network system (HNFNS) is introduced to estimate the matched uncertainty. Moreover, an FO adaptive fuzzy sliding mode controller is designed to drive the state trajectories of fuzzy singularly perturbed systems to the predefined FO sliding mode surface within a finite-time. Finally, two verification examples are presented to illustrate the validity of the proposed FO control scheme.  相似文献   

6.
In this paper, the finite-time group consensus for a class of heterogeneous multi-agent systems (HMASs) with bounded disturbances is studied by designing a pinning control scheme with an integral sliding mode. For an HMAS without disturbance, a continuous finite-time consensus protocol with a pinning and grouping strategy is proposed. Under the designed control protocol, the HMAS achieves consensus according to the given grouping requirement in a finite time and the final states converge to the desired consistency values. The detailed theoretical proof is given on the strength of Lyapunov theory, LaSalle’s invariance principle and homogeneity with dilation principle. On this basis, this paper further introduces an integral sliding mode into finite-time group consensus protocol designed above such that the HMAS with one or more pinning agents can achieve accurate finite-time group consensus even if there exist uncertain bounded disturbances. It is noted that the control input is chattering-free. Two simulation examples are presented to illustrate the effectiveness of the proposed control schemes.  相似文献   

7.
In this paper, a consensus framework is proposed for a class of linear multiagent systems subject to matched and unmatched uncertainties in an undirected topology. A linear coordinate transformation is derived so that the consensus protocol design can be conveniently performed. The distributed consensus protocol is developed by using an integral sliding mode strategy. Consensus is achieved asymptotically and all subsystem states are bounded. By using an integral sliding mode control, the subsystems lie on the sliding surface from the initial time, which avoids any sensitivity to uncertainties during the reaching phase. By use of an appropriate projection matrix, the size of the equivalent control required to maintain sliding is reduced which reduces the conservatism of the design. MATLAB simulations validate the effectiveness and superiority of the proposed method.  相似文献   

8.
Finite-time inter-layer projective synchronization (FIPS) of Caputo fractional-order two-layer networks (FTN) based on sliding mode control (SMC) technique is investigated in this article. Firstly, in order to realize the FIPS of FTN, a fractional-order integral sliding mode surface (SMS) is established. Then, through the theory of SMC, we design a sliding mode controller (SMCr) to ensure the appearance of sliding mode motion. According to the fractional Lyapunov direct method, the trajectories of the system are driven to the proposed SMS, and some novel sufficient conditions for FIPS of FTN are derived. Furthermore, as two special cases of FIPS, finite-time inter-layer synchronization and finite-time inter-layer anti-synchronization for the FTN are studied. Finally, this paper takes the fractional-order chaotic Lü’s system and the fractional-order chaotic Chen’s system as the isolated node of the first layer system and the second layer system, respectively. And the numerical simulations are given to demonstrate the feasibility and validity of the proposed theoretical results.  相似文献   

9.
In this paper, a new reaching law based sliding mode control strategy for discrete time systems is introduced. Contrary to most existing approaches, the new strategy uses a sliding variable with relative degree two. It is demonstrated that the new reaching law drives the sliding variable to a narrower quasi-sliding mode band than its relative degree one equivalent, while simultaneously ensuring the desired dynamic properties of the system. Furthermore, it is shown that the smaller quasi-sliding mode band width is reflected in reduced magnitude of all state variables in the sliding mode.  相似文献   

10.
This paper investigates a quaternion-based finite-time cooperative attitude synchronization and tracking of multiple rigid spacecraft with a virtual leader subject to bounded external disturbances. Firstly, the communication network between followers is assumed to be an undirected graph and every follower can get a direct access to the virtual leader, by using two neighborhood attitude error signals, a novel chattering-free recursive full-order sliding mode control algorithm is proposed such that all follower spacecraft synchronize to the virtual leader in finite time. In the proposed algorithm, the sliding mode surface is constructed by two layers of sliding mode surfaces, which are called as the outer and the inner sliding mode surfaces. To achieve finite-time performance of sliding mode dynamics, the outer sliding mode surface is designed as a terminal sliding mode manifold, and the inner one is designed as a fast nonsingular terminal sliding mode manifold, respectively. Then, to reduce the heavy communication burden, a distributed recursive full-order sliding mode control law is designed by introducing a distributed finite-time sliding mode estimator such that only a subset of the group members has access to the virtual leader. Finally, a numerical example is illustrated to demonstrate the validity of the proposed results.  相似文献   

11.
This paper addresses the observer-based dynamic event-triggered (DET) sliding mode control (SMC) problem for fuzzy singular semi-Markovian jump systems (FSS-MJSs) subject to generalized dissipative performance, in which a novel double-quantized structure is reasonably merged into a unified model. The main aim of this paper is to develop a mode-dependent adaptive sliding mode control (ASMC) law through the DET rule, which not only makes the closed-loop systems mean-square admissibility and generalized dissipative, but also the finite-time reachability around the predefined sliding mode surface (SMS) can be achieved. Firstly, in order to improve the data transmission efficiency and save network bandwidth resources, DET and doubled-quantized-based control protocol are introduced, in which the event-based threshold function is dynamically regulated and the data of input and output are both quantized; Secondly, due to the sensor information constraints, system state information is not always obtained in practice, hence, a suitable observer design can make up for this defect. Meantime, in terms of elegant linearization technique and implicit function theorem, the uniqueness of the solution for FSS-MJSs is also established; Additionally, by making use of the Lyapunov functional and linear matrix inequality (LMI) technique, both the desired SMC gains, observer gains and triggering parameter matrices are co-designed, more than that the derivative singular matrix is also integrated into the whole design process such that the derived conditions are much more easily to be checked; Finally, a numerical example and a practical application example are co-given to verify the effectiveness of our design mentality.  相似文献   

12.
This paper aims to solve the problem of sliding mode control for an uncertain two-dimensional (2-D) systems with states having time-varying delays. The uncertainties in the system dynamics are constituted of mismatched uncertain parameters and the unknown nonlinear bounded function. The proposed problem utilizes the model transformation approach. By segregating the proper Lyapunov–Krasovskii functional in concert with the improved version of Wirtinger-based summation inequality, sufficient solvability conditions for the existence of linear switching surfaces have been put forward, which ensure the asymptotical stability of the reduced-order equivalent sliding mode dynamics. Then, we solve the controller synthesis problem by extending the recently proposed reaching law to 2-D systems, whose proportional part is appropriately scaled by the factor that does not depend on some constant terms but rather on current switching surface’s value, which in turn ensures the faster convergence and better robustness against uncertainties. Finally, the proposed results have been validated through an implementation to a suitable physical system.  相似文献   

13.
This paper tackles the compensation problem of linear time invariant systems affected by unmatched perturbations. The proposed methodology exploits a high order sliding mode observer, guaranteeing theoretically exact state and perturbation estimation. A compensation based strategy is proposed to cope with the unmatched perturbations. The compensation of the desired coordinate is carried through a nested backward sliding surface design, which compensates some of the non-actuated state components, while the remaining states are maintained to be bounded. The feasibility of the technique was tested in an active suspension vehicle system.1  相似文献   

14.
This work is concerned with the finite-time sliding mode control for a class of Markovian jump systems subject to actuator nonlinearities, where the elements in the transition rate matrix are uncertain or even completely unknown. A suitable sliding mode controller is designed such that the finite-time stochastic boundedness of state trajectories is attained during a given finite-time interval, in which two different robust terms are introduced for the known and unknown modes to deal with the effect of uncertain transition rates. Moreover, the connections among sliding functions under Markovian jumping for SMC systems are analyzed. Finally, some simulation results with a wheeled mobile manipulator are provided.  相似文献   

15.
The issue of adaptive sliding mode controller design via output knowledge is studied for discrete-time Markov jump systems in this paper by means of using singular system scheme. To force the system state onto the sliding motion, an appropriate switching surface depended on the system output is established. Meanwhile, the reachability of the sliding manifold is guaranteed by synthesizing the robust sliding mode controller and adaptive sliding mode controller for the accessible and inaccessible upper bounds of sliding patch, respectively. By using Lyapunov functional technique, sufficient criteria to guarantee the sliding motion to be stochastically admissible are proposed. Then the reachability conditions of the predesigned switching surface are developed. Finally, simulation results are provided to illustrate the effectiveness of the proposed approach.  相似文献   

16.
This paper considers the sliding mode control (SMC) problem of a class of uncertain Markovian jump systems, in which there exist randomly occurring parameter uncertainties and random gain variations in the controller. By introducing two independent random variables obeying Bernoulli distribution, the random characteristics of parameter uncertainties and controller gain variations are described. A mode-dependent sliding surface is constructed, and then, the non-fragile SMC scheme is synthesized such that the specified sliding surface is reached in finite time. Furthermore, the stochastic finite-time boundedness over both the reaching and sliding stages are ensured simultaneously under some sufficient conditions. Finally, the developed non-fragile SMC approach is verified by a practical example.  相似文献   

17.
Finite-time stability involves dynamical systems whose trajectories converge to an equilibrium state in finite time. In this paper, we consider a general class of fully actuated mechanical systems described by Euler–Lagrange dynamics and the class of underactuated systems represented by mobile robot dynamics that are required to reach and maintain the desired trajectory in finite time. An approach known as the terminal sliding mode control (TSMC) involves non-smooth sliding surfaces such that, while on the sliding surface, the error states converge to the origin in finite time thus ensuring finite-time tracking. The main advantage of this control scheme is in fast converging times without excessive control effort. Such controllers are known to have singularities in some parts of the state space and, in this paper, we propose a method of partitioning the state space into two regions where the TSMC is bounded and its complement. We show that the region of bounded TSMC is invariant and design an auxiliary sliding mode controller predicated on linear smooth sliding surface for the initial conditions outside this region. Furthermore, we extend these results to address TSMC for underactuated systems characterized by the mobile robot dynamics. We demonstrate the efficacy of our approach by implementing it for a scenario when multiple dynamic agents are required to move in a fixed formation with respect to the formation leader. Finally, we validate our results experimentally using a wheeled mobile robot platform.  相似文献   

18.
This paper investigates the problem of sliding mode control (SMC) for discrete-time two-dimensional (2-D) systems subject to external disturbances. Given a 2-D Fornasini–Marchesini (FM) local state space model, attention is focused on designing the 2-D sliding surface and sliding mode controller, which guarantees the resultant closed-loop system to be asymptotically stable. Particularly, this problem is solved using the model transformation based method. First of all, sufficient conditions are formulated for the existence of a linear sliding surface guaranteeing the asymptotic stability of the equivalent sliding mode dynamics. Based on this, a sliding mode controller is synthesized to ensure that the associated 2-D FM system satisfies the reaching condition. The efficiency of the proposed 2-D SMC law design is shown by a numerical example. This paper extends the idea of model transformation to the 2-D systems and solves the SMC problem of a more general 2-D model in FM type for the first time.  相似文献   

19.
Robustness to unmatched parametric uncertainty is prime requirement of roll control algorithm, especially when it is modelled in discrete time domain and implemented through on-board processor. Sliding mode control is a well established nonlinear control technique, which ensures a robust performance in presence of matched uncertainties and disturbances. In case of the discrete version of sliding mode control, due to finite operational sampling frequency, the system trajectories cannot be forced to slide on the switching manifold. The trajectories remain confined to certain domain around the sliding surface and this is known as Quasi Sliding Mode (QSM) motion. The bound of QSM decides the accuracy and performance of the discrete version of sliding mode. By design, the discrete-time sliding modes are robust to the matched bounded perturbations, however, unmatched perturbations directly affect the boundary layer width and hence the performance of the system. In the present paper, discrete time Lyapunov inequality based sliding hyperplane is designed, which enables robustness to unmatched perturbations arising due to uncertain system matrix A. Further, the requirement of full state-vector for the design of control and sliding surface is met through the multi-rate output feedback (MROF). This control strategy is then demonstrated with application to roll position control of missile with a bandwidth limited actuator.  相似文献   

20.
In consideration of target angular velocity uncertainty and external disturbance, a modified dynamic output feedback sliding mode control (DOFSMC) method is proposed for spacecraft autonomous hovering system without velocity measurements. As a stepping-stone, an additional dynamic compensator is introduced into the design of sliding surface, then an augmented system is reconstructed with the system uncertainty and external disturbance. Based on the linear matrix inequality (LMI), a sufficient condition is given, which guarantees the disturbance attenuation performance of sliding mode dynamics. By introducing an auxiliary variable, a modified version of adaptive sliding mode control (ASMC) law is designed, and the finite-time stability of sliding variable is established by the Lyapunov stability theory. Compared with other results, the proposed method is less conservative and can decrease the generated control input force significantly. Finally, two simulation examples are performed to validate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号