首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
这里介绍一类不等式,条件极值的特殊证法(解法)如下: ①通过变形、引入参数,换元等,把已知条件,要证结论化为直线(平面)或圆(球面)的方程的形式。②根据直线与圆(平面与球面)有公共点的条件,直接应用点到直线(平面)的距离公式即可获解。例1 已知x+2y+3z=a 求证: 证:问题可归为求使直线 x+2y+(3z-a)=0 与圆 x~2+y~2=a~2-z~2 有公共点(x,y)的z的取值范围,则平方整理后得:  相似文献   

2.
<正>2019年全国卷Ⅲ第23题是:设x、y、z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若成立,证明:a≤-3或a≥-1.1 解法探究解法一 (1)设P0(x0,y0,z0)是平面α上的某一个定点,P(x,y,z)是平面α上的任意一点,n=(A,B,C)( 其中A2+B2+C2≠0)是平面α的一个法向量,从而,即A(x-x0)+B(y-y0)+C(z-z0)=0,若令D=-(  相似文献   

3.
<正>1 题目呈现设x,y,z∈R,且x+y+z=1.求(x-1)~2+(y+1)~2+(z+1)~2的最小值.(2019年全国卷Ⅲ选考题)2 解法展现2.1 切入点1 运用均值不等式解法1 [(x-1)+(y+1)+(z+1)]~2=(x-1)2+(y+1)2+(z+1)~2+2(x-1)(y+1)+2(y+1)(z+1)+2(z+1)(x-1)≤3[(x-1)~2+(y+1)~2+(z+1)~2].  相似文献   

4.
复数是高中代数的重要内容 ,由于它有多种表示方法 (代数法、三角法和指数法等 ) ,能将代数、三角、几何等知识紧密地联系起来 ,因此 ,在数学竞赛中常有有关复数的考题 .另外 ,复数本身也可作为一种方法 ,运用复数法可以解决函数最值、三角恒等式、组合问题、不等式问题、数列问题等 .1 求函数最值例 1 若 x,y,z∈ ( 0 ,+∞ ) ,且 x+ y+ z= 1 ,求 u=x2 + y2 + xy + y2 + z2 + yz+x2 + z2 + xz的最小值 .略解 令 z1 =( x+ 12 y) + 32 yi,z2 =( y+ 12 z) + 32 zi,z3=( z+ 12 x) + 32 xi,∴ u=| z1 | + | z2 | + | z3|≥ | z1 + z2 + z3|=3.…  相似文献   

5.
一道2010年瑞士数学奥林匹克不等式的证明   总被引:1,自引:0,他引:1  
一道2010年瑞士数学奥林匹克试题如下:已知x、y、z>0,xyz=1,求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z.证因为x、y、z>0,  相似文献   

6.
题目 已知x、y、z>0,xyz=1.求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z. 在文[1]中,作者给出的证法虽好,但不利于推广.本文中笔者给出此不等式的四种证法及推广.  相似文献   

7.
2019年高考全国卷Ⅲ第23题(1):设x,y,z∈R,且x+y+z=1,求(x-1)^2+(y+1)^2+(z+1)^2的最小值.若以不等式方式呈现就是:设x,y,z∈R,且x+y+z=1,求证:(x-1)^2+(y+1)^2+(z+1)^2≥4/3.  相似文献   

8.
如果正整数a、b、c、d满足关系a~2+b~2+c~2=d~2,则a、b、c、d可分别作为长方体的长、宽、高和对角线。于是,我们说a、b、c、d是一组长方体数。长方体数可看作是勾股数的三维推广,从这一点就可说明长方体数在立体几何数学中,在第二课堂教学中均具有参考价值。长方体数是不定方程x~2+y~2+z~2=w~2的正整数解。因此,本文从讨论不定方程x~2+y~2+z~2=w~2的正整数解出发推导构造长方体数的两个法则。因不定方程x~2+y~2+z~2=w~2有正整数解。可先假定(x,y,z)=1。因当(x,y,z)=d_0>1时,由d_0~1|x~2,d_0~2|y~2,d_0~2|z~2有d_0~2|w~2,即有d_0~2|w,此时不定方程两边可同时约去d_0,便有(x/d~0,y/d_0,z/d_0)=1。当(x,y,z)=1时,显然x、y、z不可能同时为  相似文献   

9.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

10.
1填空题 1)向量a=(-3,0,4)的单位向量是_。 2)若直线4/x-1=3/y+2=1/z与平面Ax+3y-5z+1=0平行,则A=_。 3)方程2x2+y2+3z2=1所表示的曲面是_。 4)函数z=  的定义域是_。 5)空间曲线x=x(t)、y=y(t)、z=z(t)在t=to处的法平面方程为_。 6)设  ,则  相似文献   

11.
拙文《一个代数不等式的几何证法》(见《数学教学通讯》2 0 0 3年第 9期 )证明了不等式x2 +y2 +( x -1) 2 +y2 +x2 +( y -1) 2≥ 22 ( 3 +1) ,1其中 x,y是任意实数 ,罗增儒先生发表了大作《两种解法—两种结果的沟通》(见《数学教学通讯》,2 0 0 4年 1期 ) ,用多种方法非常详尽地对上述不等式进行了证明和研究 ,笔者深受教益 ,今对不等式 1中等号成立的条件补充说明一下 ,可以验证 ,当x =y =3 -36时 ,不等式 1中的等号成立 .以下将不等式 1进行推广 ,叙述为下面的两个命题 .命题 1 设 x,y,z∈ R,则x2 +y2 +z2 +( x -1) 2 +y2 +z2+x2 +( y …  相似文献   

12.
本刊文 [2 ]用几何方法改进并证明了文[1]出现的不等式 :已知 x,y∈ R,求证x2 +y2 +( x -1) 2 +y2 +x2 +( y -1) 2 ≥ 22 ( 3 +1) .这体现了由数到形的沟通 ,但还不是完整意义上的数形结合 ,本文补充由形到数的沟通 .首先将费马点所提供的几何意义 ,用复数乘法把 OP,AP,BP首尾连接 ,再用复数模不等式|z1 |+|z2 |+|z3 |≥ |z1 +z2 +z3 |1拉直 ,得出证明 1;然后把复数运算“翻译”为配方 ,并把 1改写为∑3i= 1a2i +b2i ≥ ( ∑3i=1ai) 2 +( ∑3i =1bi) 2 ,2得出更直接的代数证明 .其中的复数证法能说明配方的来由 ,而不是妙手偶得的技巧 .…  相似文献   

13.
我们已经知道二元一次不定方程ax+by=c(a,b,c都是整数,且(a,b)=1)的通解可由公式x=x0+bt y=y0-at(t是整数)来表示,而三元一次不定方程组a1x+b1y+c1z=d1, a2x+b2y+c2z=d2(ai、bi、ci都是整数,且(ai、bi、ci)=1,i=1,2)的通解是什么?通过探讨,得到如下定理:  相似文献   

14.
不等式的证明题中,常常会在给定条件或待证的不等式中含有“1”或与“1”有关的项.因此,熟知“1”的应用技巧并灵活运用,对学生拓宽解题思路、提高解题能力是十分有益的.下面就证明不等式时“1”的几个常用技巧做一总结.※“1”的等量代换法※当给定条件中有含“1”的等量关系式时,常常将“1”用式子等量代换到要证明的不等式中,对原不等式变形.[例1]已知x+y+z=1,证明x2+y2+z2≥13.证明:原不等式可变形为3(x2+y2+z2)≥1.∵x+y+z=1,∴3(x2+y2+z2)≥(x+y+z)2,左-右=3x2+3y2+3z2-(x+y+z)2=2x2+2y2+2z2-2xy-2yz-2zx=(x-y)2+(y-z)2+(z-x)2≥0∴原…  相似文献   

15.
设空间直线过定点(x。,y。,z o),其方向向量V={l,m、n}, fx=x 0+It -则{y:y。+mt (t为参数)称为直线的参数式方程。 Iz=z o+nt本文将探讨直线参数式方程的若干应用。 (一)求 交 点 fx=x o I-It把直线方程2y:y。+mt(t为参数)代入曲面方程f(x,y、z)=o,得f相似文献   

16.
本文就平面解析几何中的曲线方程所表示的平面封闭图形以及与圆锥曲线相关的多边形(特别是三角形)的面积问题,从不同的层面、不同的审视角度,用不同的方法进行剖析求解,旨在为读者提供一个探讨问题的平台,营造一种互相交流的气氛.一、应用坐标法求面积【例1】正方形ABCD内一点P到A、B、D三点的距离分别为1、3、7,则正方形的面积S=.解析:合理选取坐标系,使点A(0,0)、B(a,0)、C(a,a)、D(0,a),设点P(x,y),则有|PA|=1|PB|=3|PD|=7x2+y2=1(x-a)2+y2=9x2+(y-a)2=7x2+y2=11-2ax+a2=91-2ay+a2=7x2+y2=1x=a22-a8y=a22-a6a22-a82+a22-a62=1a4-…  相似文献   

17.
前几年一份杂志载有如下数学题及解答:题若x十y十:一工,34 试证:x’一卜yZ十z’夕去 原证:令二“一秀一t,y=,五一2t,二告一十3t(t是实数)护+y之+户 =(通一t)’+(感,一Zr)’+(告一+3t)’ =告+14t’)去(丫t是实数) 当t二O时,即劣=g=二二含时,上式取等号。 此题的几何意义:二+互+:=1在空间解析几何中表示如下平面:经过三条坐标轴上的单位点(i,o,o)、(0,1。0)、(0,o,1)所决定的平面,原点到这个平面的距离是告,即原点到这个平面上各点距离中最短者为去。 .’. xZ十夕2+2事)告。 事实上,由题目的已知条件不一定能推导出结论:取x=i,万=一i,“=1, …  相似文献   

18.
正引子:高中学生在复数学习过程中,经常会遇到这样一个习题:试证(a2+b2)(c2+d2)可表示成x2+y2的形式.事实上,令z1=a+bi,z2=c+di,两数相乘,得(a+bi)(c+di)=(ac-bd)+(ad+bc)i.两边平方可得,|(a+bi)(c+di)|2=|a+bi|2|c+di|2=|(ac-bd)+(ad+bc)i|2,即(a2+b2)(c2+d2)=(ac-bd)2+(ad+bc)2,令x=acbd,y=ad+bc,即得结论.  相似文献   

19.
二次函数y =ax2 +bx +c(a≠ 0 )配方后可变为标准形式y =a(x + b2a) 2 + 4ac-b24a (a≠ 0 ) ,由此可以很快求出y的最值 ,初中数学中 ,有不少的最值问题 ,常常可以转化为二次函数来求解 ,下面通过几个例子来介绍几种求解方法。一、主元代入法例 1. 已知x、y、z均是实数 ,且满足x + 2y -z =6x -y + 2z =3求x2 +y2 +z2 的最小值。 (2 0 0 1年安庆市竞赛题 )解 :原方程组变为 :x + 2y =6 +zx -y =3- 2z,解得 x =4 -zy =z+ 1于是x2 +y2 +z2=(4-z) 2 + (z+ 1) 2 +z2=3z2 - 6z+ 17=3(z - 1) 2 + 14当z=1(此时x =3,y =2 )时 ,x2 +y2 +z2 取到最小值…  相似文献   

20.
题目:设x+y+z=xyz,(x>0,y>0,z>0)求证:2(x2+y2+z2)-3(xy+yz+xz)+9≥0文[1]中用三角函数知识来证明,且证明繁琐,文[2]用换元的方法,然后利用第25届IMO试题的结论:若x≥0,y≥0,z≥0,且x+y+z=1,则xy+yz+xz-2xyz≤727来证明也是不简单,实际上利用拙文[3]中提出的证明不等式化齐次的策略可简单地给出证明.证明:因x+y+z=xyz,原不等式等价于2(x2+y2+z2)(x+y+z)-3(x+y+z)(xy+yz+xz)+9xyz≥02(x3+y3+z3)+2x(y2+z2)+2y(x2+z2)+2z(x2+y2)-3x(y2+z2)-3y(x2+z2)-3z(x2+y2)-9xyz+9xyz≥02(x3+y3+z3)-x(y2+z2)-y(x2+z2)-z(x2+y2)≥0(x+y)(x-y)2+(y+z)(y-z…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号