首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

2.
我们对现行高中数学课本及《教学参考资料》中几处地方有异议,分类一一列出。 (一)课本上有六个题目条件欠充分。 (1)已知a、b、c成等比数列,m是a、b的等差中项,n是b、c的等差中项,求证a/m c/n=2。(代数甲种本第二册P43第4题) (2)已知a~2、b~2、c~2成等差数列,求证1/(b c),1/(c a),1/(a b)也成等差数列。(代数第二册P76第6题)  相似文献   

3.
已知三个数成等差数列,求证与此相关的另三个数也成等差数列,这是《数列》一章经常出现的习题。例如“已知 a~2,b~2,c~3 成等差数列,求证1/(b+c),1/(c+a),1/(a+b)也成等差数列。“(高中代数第二册复习题二第6题)从数列的定义出发,证明过程往往较繁,本文介绍一个新的方法。命题:已知三个数 a,b,c 成等差数列(公差  相似文献   

4.
第31届IMO备选题中,有一道不等式证明的试题,我们把它表述为:命题2 设a、b、c、d为非负实数,且满足 ab bc cd da=1,则a~3/(b c d) b~3/(a c d) c~3/(a b d) d~3/(a b c)≥1/3综合条件与结论,就是:命题2 对于a、b、c、d∈R~ ,有a~3/(b c d) b~3/(a c c) c~3/(a b c) d~3(a b c)≥1/3(ab bc cd a).仔细研究,不难发现,命题2的雏形是常见的  相似文献   

5.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

6.
定理1 欲证 P≥Q,只需证 P Q≥2Q.例1 (《数学通报》数学问题解答1602)已知 a,b,c∈R_ ,求证:((a b)/(a c))a~2 ((b c)/(b a))b~2 ((c a)/(c b))c~2≥a~2 b~2 c~2 .证明:不等式可化为P=a~3b~2 b~3c~2 c~3a~2≥a~2b~2c ab~2c~2 a~2bc~2≥Q.P Q=(a~3b~2 ab~2c~2) (b~3c~2 a~2bc~2) (c~3a~2  相似文献   

7.
性质1 如果a,b,c三个数成等比数列,则a~2b~2c~2(1/a~3 1/b~3 1/c~3)=a~3 b~3 c~3证明: ∵a,b,c成等比数列 ∴b/a=c/b 左端=a~2b~2c~2(1/a~3 1/b~3 1/c~3) =b~2c~21/a a~2c~21/b a~2b~21/c =a~3 b~3 c~3=右端性质2 如果a,b,c,d四个数成等比数列,则  相似文献   

8.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

9.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

10.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

11.
原命题已知a、b、c∈R~+,且两两不等,求证: 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 这是高中《代数》(甲种本)第二册复习参考题三(A组)第5题,本文对该题作进一步的探讨。一、原命题的改进和拓广首先指出原命题可改进为命题一已知a、b、c∈R~+,且不全相等,则 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 其证明参见下面命题二的证明。二、分析探索,拓广命题原命题给出的不等式两边都是齐次式,我们可以从项数和指数两个方面进行推广。命题二已知a、b、c、d∈R~+,则 3(a~3+b~3+c~3+d~3)  相似文献   

12.
该不等式可用归纳法证明,现在来看它在解数学竞赛题中的几个应用。 例1 设a、b、c为正数,求证: a~2/(b c) b~2/(c a) c~2/(a b)≥(a b c)/2. (1988,友谊杯竞赛)  相似文献   

13.
1.已知a、b、c为正整数,且a~2+b~2+c~2+48<4a+6b+12c,求(1/a+1/b+1/c)~(abc)的值.解:由a、b、c为正整数,得a~2+b~2+c~2+48和4a+6b+12c均为正整数,则不等式a~2+b~2+c~2+48<4a+6b+12c与不等式a~2+b~2+c~2+48+1≤4a+6b+12c等价.  相似文献   

14.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

15.
第三十六届国际奥林匹克数学竞赛第二题: 设a、b、c为正实数,且满足a·b·c=1,试证:1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥3/2(1)。(俄罗斯提供) 证法一 由已知条件a·b·c=1,(1)与下面(2),等价:b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥3/2(2),现用含参数基本不等式:a~2 (λb)~2≥2abλ(λ为参数)的变形:a~2/b≥2λa-λ~2b。因而  相似文献   

16.
某种课本上有这样一道例题:“已知a,b,c是不全相等的正数,求证a(b~2+c~2)+b(c~2+a~2)+c(a~2+b~2>6abc.”其证明过程是:“∵b~2+c~2≥2bC,a>0,∴a(b~2+C~2)≥2abc (1)同理,b(c~2+a~2)≥2abc (2)c(a~2+b~2)≥2abc(3)因为a、b、c不全相等,所  相似文献   

17.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

18.
丁兴春 《中学教研》2007,(10):26-27
下面题目出现在各类数学辅导资料上:题1 设 a>b>c>0,求证:a~2b b~2c c~2a>ab~2 bc~2 ca~2.最近笔者在解数学奥林匹克竞赛题时,遇到了与题目1相似的一道不等式题:题2 设 a>b>c>0,求证:a~3b~2 b~3c~2 c~3a~2>a~2b~3 b~2c~3 c~2a~3.比较上面2道不等式题,猜想是否具有一般性的结论呢?即:当 a≥b≥c>0,s,t ∈N*且 s≥t时,是否有:a~sb~t b~sc~t c~sa~t≥a~tb~s b~tc~s c~ta~s 成立呢?  相似文献   

19.
代数部分1.本届IMO第1题.2.已知实数a、b、c、d满足a+b+c+d=6.a~2+b~2+c~2+d~2=12.证明:36≤4(a~3+b~3+c~3+d~3)-(a~4+b~4+c~4+d~4)≤48.3.已知x_1,x_2,…,x_(100)是非负实数,且对于  相似文献   

20.
一个不等式变形的应用   总被引:1,自引:0,他引:1  
著名的Jacobsthal不等式定义为): 设x≥0,y≥0,对任意正整数n,则有x~n (n-1)y~n≥(nxy)~(n-1). 当y>0时,可变形为x~n/y~(n-1)≥nx-(n-1)y.(*) (*)式实际上也可看作一个降幂型不等式,从而看出对于一些次数较高的不等式,可以通过(*)式转化成低次来处理,下举例说明. 例1 设a,b,c为正数,求证: a~2/(b c) b~2/(c a) c~2/(a b)≥(a b c)/2. (第二届“友谊杯”国际数学邀请赛题) 证明 由(*)式,注意到 4a~2/(b c)=(2a)~2/(b c)≥2(2a)-(b c)=4a-b  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号