首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

2.
A full order fractional-order observer is designed for a class of Lipschitz continuous-time nonlinear fractional-order systems with unknown input. Sufficient conditions of existence for the designed observer and stability of state estimation error system are developed by reconstructing state and using general quadratic Lyapunov function. By applying fractional-order extension of Lyapunov direct method, the stability of the fractional-order state estimation error system is analyzed. Due to the conditions involving a nonlinear matrix inequality, a new sufficient condition with linear matrix inequality (LMI) is reformulated, which makes the full order fractional-order observer implemented easily by using Matlab LMI toolbox. Examples are taken to show the effectiveness of the proposed approach by numerical simulations.  相似文献   

3.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

4.
This paper presents novel approaches for stability analysis of switched linear time-delay stochastic systems under dwell time constraint. Instead of using comparison principle, piecewise switching-time-dependent discretized Lyapunov functions/functionals are introduced to analyze the stability of switched stochastic systems with constant or time-varying delays. These Lyapunov functions/functionals are decreasing during the dwell time and non-increasing at switching instants, which lead to two mode-dependent dwell-time-based delay-independent stability criteria for the switched systems without restricting the stability of the subsystems. Comparison and numerical examples are provided to show the efficiency of the proposed results.  相似文献   

5.
This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov–Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

6.
We study the input-to-state stability (ISS) of switched nonlinear input delay systems under asynchronous switching. Our results apply to cases where some subsystems of the switched systems are not necessarily stable under the influence of input delay. By making a compromise among the matched-stable period, the matched-unstable period, and the unmatched period and allowing the increase of the Lyapunov–Krasovskii functional (LKF) on all the switching times, the extended stability criteria for switched delay systems in generally nonlinear setting are derived first. Then, we focus on switched nonlinear input delay systems where the presence of the input delay leads to the instability of some subsystems of it. By explicitly constructing input-to-state stable LKF, the sufficient conditions for ISS of switched nonlinear input delay systems under asynchronous switching are presented. Finally, two examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

7.
In this paper, a new framework of the robust adaptive neural control for nonlinear switched stochastic systems is established in the presence of external disturbances and system uncertainties. In the existing works, the design of robust adaptive control laws for nonlinear switched systems mainly relies on the average dwell time method, while the design and analysis based on the model-dependent average dwell time (MDADT) method remains a challenge. An improved MDADT method is developed for the first time, which greatly relaxes the requirements of Lyapunov functions of any two subsystems. Benefiting from the improved MDADT, a switched disturbance observer for discontinuous disturbances is proposed, which realizes the real-time gain adjustment. For known and unknown piecewise continuous nonlinear functions, a processing method based on the tracking differentiator and the neural network is proposed, which skillfully guarantees the continuity of the control law. The theoretical proof shows that the semiglobal uniform ultimate boundedness of all closed-loop signals can be guaranteed under switching signals with MDADT property, and simulation results of the longitudinal maneuvering control at high angle of attack are given to further illustrate the effectiveness of the proposed framework.  相似文献   

8.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

9.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

10.
This paper investigates the problem of global stabilization of switched nonlinear systems in non-triangular form whose subsystems are not assumed to be asymptotically stabilizable. The use of multiple Lyapunov functions (MLFs) method permits removal of a common restriction in which the nonlinear structures in the non-switched nonlinear systems are restricted to a triangular structure when applying backstepping. Using the MLFs method and the adding a power integrator technique, we design state-feedback controllers for individual subsystems and construct a switching law to guarantee asymptotic stability of the closed-loop switched system. As an application of the proposed design method, the global stabilization problem of a continuously stirred tank reactor (CSTR) system and two inverted pendulums which cannot be handled by the existing methods is investigated.  相似文献   

11.
This paper proposes an adaptive observer-based neural controller for a class of uncertain large-scale stochastic nonlinear systems with actuator delay and time-delay nonlinear interactions, where drift and diffusion terms contain all state variables of their own subsystem. First, a state observer is established for estimating the unmeasured states, and a predictor-like term is utilized to transform the input delayed system into the delay-free system. Second, novel appropriate Lyapunov–Krasovskii functionals are used to compensate the time-delay terms, and neural networks are employed to approximate unknown nonlinear functions. At last, an output-feedback adaptive neural control scheme is constructed by using Lyapunov stability theory and backstepping technique. It is shown that the designed neural controller can ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error is driven to a small neighborhood of the origin. The simulation results are presented to further show the effectiveness of the proposed approach.  相似文献   

12.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   

13.
In this note, we will devote to investigate the stability of discrete-time switched positive linear time-varying systems (PLTVSs). Firstly, a new asymptotic stability criterion of discrete-time PLTVSs is obtained by using time-varying copositive Lyapunov functions (TVCLFs) and this criterion is then extended to the switched case based on the multiple TVCLFs. Furthermore, the sufficient conditions are derived for stability of discrete-time switched PLTVSs with stable subsystems by means of function-dependent average dwell time and function-dependent minimum dwell time. In addition, the stability sufficient conditions are drawn for the switched PLTVSs which contain unstable subsystems. It is worth noting that the difference of TVCLFs and multiple TVCLFs are both relaxed to indefinite in our work. The theoretical results obtained are verified by two numerical examples.  相似文献   

14.
The stability for discrete nonlinear switched singular systems with unstable subsystems is investigated. First, by constructing an appropriate multiple discontinuous Lyapunov function, and utilizing the characteristics of mode-dependent average dwell time switching signals, new stability results for nonlinear switched singular system are established. Then, we adopt the T-S fuzzy modeling method to approximate the nonlinear switched singular systems and get general stability conditions in forms of linear matrix inequalities. Compared to the current results, our technique is more flexible and we also get tighter dwell time boundaries. Furthermore, a numerical example demonstrates the effectiveness of the proposed method.  相似文献   

15.
In this paper, an observer-based adaptive control problem for a class of high-order switched nonlinear systems in non-strict feedback form with fuzzy dead zone and arbitrary switchings is investigated. Fuzzy logic system was utilized to model the unknown nonlinear function with the universal approximation ability. An adaptive high-order observer is constructed to estimate unavailable state variables. The effect of dead zone can be eliminated by a Nussbaum function. By using the Lyapunov stability theory and backstepping design procedure, the proposed adaptive controller can guarantee all the variables in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB). Simulation results are exhibited to demonstrate the effectiveness of the proposed control scheme.  相似文献   

16.
In this paper, the problem of state and unknown input estimations for a class of discrete-time switched linear systems with average dwell time switching is investigated. First, a proportional integral observer with an exponential H performance is constructed to estimate the system state and unknown input simultaneously. Second, both of the observability and the stability of the estimation error system are analyzed, then the derivation of the observer gain matrices is transformed into the calculation of linear matrix inequalities. Third, the obtained results are extended to the systems with output disturbances. Finally, two simulation examples are provided to show the validity and effectiveness of the proposed methods.  相似文献   

17.
This paper addresses the problem of designing a state observer for a class of nonlinear discrete-time systems using the dissipativity theory. We show that the dissipative observation methodology, originally proposed by one of the authors for continuous-time nonlinear systems, can be extended to the discrete-time case. For constructing a convergent observer, the methodology is applied to the nonlinear estimation error dynamics, which is decomposed into a discrete-time Linear Time-Invariant (LTI) subsystem in the forward loop, connected to a time-varying static nonlinearity in the feedback loop. In order to assure asymptotic stability of the closed-loop, complementary dissipativity conditions are imposed on each of the subsystems: (i) the static nonlinearity is required to be dissipative with respect to a quadratic supply rate, and (ii) the observer gains are designed such that the LTI system is dissipative with respect to a complementary supply rate. As in the continuous time framework, the proposed method includes as special cases, unifies and generalizes some observer design methods proposed previously in the literature. A great advantage of the Dissipative Observer Design Method proposed here is that it leads to Matrix Inequalities for the design of the observer gains, and these can be usually converted into Linear Matrix Inequalities (LMI’s). The results are illustrated using Chua’s Chaotic system.  相似文献   

18.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

19.
In this paper, we investigate the consensus tracking problem of nonlinear MASs with nonuniform time-varying input delays and external disturbances. For each follower, the composited disturbance observer and the state observer are employed to estimate bounded composited disturbances and unmeasured states, and a distributed observer based on output-feedback is proposed to approximate the leader’s states approachably. Sequentially, the consensus tracking control is converted into a stability control problem for the nonlinear MASs with nonuniform time-varying input delays. Subsequently, a distributed controller based on the truncated prediction approach is presented, which only depends on the boundary value of time-varying input delays. The distributed controller can render each follower synchronically stable via the Lyapunov stability theory. Finally, a group of single-link manipulators is used as an example to verify the effectiveness of the theoretical results.  相似文献   

20.
This paper develops a novel observer design method for multi-motor web-winding system. Firstly, the multi-motor web-winding system is regarded as a synthetic system with several subsystems, where the dynamic model for each subsystem is given. Then, the nonlinear diffeomorphism transformation is introduced to obtain a transformed system with block triangular structure and the interconnections among the subsystems are allowed. Next, a decentralized high-gain observer with sliding mode is designed for the transformed system, based on which the estimation error dynamics can be got. Sufficient condition of asymptotic stability for estimation error dynamics is derived by the Lyapunov stability theory and the observer gain is obtained. After that, the observer for original multi-motor web-winding system is achieved via inverse transformation. Finally, the simulation and analysis are performed in the three-motor web-winding system to verify the effectiveness of the proposed observer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号