首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a fault-tolerant control problem for a class of interconnected linear hyperbolic partial differential equation systems. Both subsystem faults and coupling faults are considered. Firstly, the well-posedness of the faulty system is analyzed by using semigroup theory. Secondly, for the fault-free case, a stabilizing boundary feedback control based on small-gain theorem is proposed. Consequently, in the presence of faults, fault recoverability conditions are established that maintain the stability of the faulty systems. The fault-tolerant control strategies are also provided. A heat exchanger example is taken to illustrate the effectiveness and practicality of the proposed methods.  相似文献   

2.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

3.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

4.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

5.
6.
This paper considers the topic of adaptive leader-following fault-tolerant tracking control for a class of non-strict feedback nonlinear multi-agent systems with or without state constraints in a unified solution. Through the use of certain transformation techniques, the original constraint system is recast as a new completely unconstrained system. Compared with the existing results, the limitation that the constraint functions need upper bound is relaxed. By employing radial basis function neural networks (RBFNNs) to approximate the unknown functions. A novel adaptive fault-tolerant consensus tracking control (CTC) manner is raised with command filtered backstepping design. Then, through the Lyapunov stability analysis, the proposed scheme can ensure all signals in the closed-loop system are cooperative semi-globally uniformly ultimately bounded (SGUUB). Finally, simulation example confirms the efficiency of the proposed method.  相似文献   

7.
This paper proposes a sensorless fault-tolerant control strategy solving the tracking problem of the maximum delivered power characteristic for a wind energy conversion system equipped with a permanent magnet synchronous generator. A previously published control scheme ensuring the maximum power efficiency of the wind turbine, not requiring feedback information about rotor speed and position, and about wind velocity, is here extended to make the control scheme fault-tolerant with respect to possible electrical faults affecting the equations of the permanent magnet synchronous generator (PMSG) in the original (α, β) frame. The control law is based on a number of interconnected nonlinear observers. Closed loop asymptotic vanishing of the observation errors is proved. The proposed control solution has been validated on the National Renewable Energy Laboratory (NREL) 5-MW three-blade wind turbine model.  相似文献   

8.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

9.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, we present a fault-tolerant control (FTC) framework for a class of nonlinear networked control systems (NCSs). Firstly, the plant is transformed into two subsystems with one of them decoupled from the system fault. Then, the nonlinear observer is designed to provide the estimation of unmeasurable state and modelling uncertainty, which are used to construct fault estimation algorithm. Considering the sampling intervals occurred by net, a fault-tolerant control method is proposed for such nonlinear NCSs using the impulsive system techniques. The controller gain and the maximum sampling interval, which make the faulty system stable are given. An example is included to show the efficiency of the proposed method.  相似文献   

11.
This paper focuses on the observer-based fault-tolerant control problem for the discrete-time nonlinear systems with the perturbation and the fault signals. First, the nonlinear term with perturbation is put into the local nonlinear part so that the nonlinear system with perturbation can be described as an interval type-1 (IT1) T-S fuzzy system. Then, based on the unknown input observer technology, the IT1 T-S fuzzy fault estimation (FE) observer scheme is presented to obtain the real-time FE information and decouple the local nonlinear part from the estimation error system, where the design complexity and the computational burden are reduced simultaneously. Second, based on the real-time FE information, an FE-based interval type-2 (IT2) T-S fuzzy fault-tolerant control scheme is presented to achieve the compensation for the influence of the fault signal and the stabilization for the system. Different from the traditional methods, a mixed design scheme, which is based on the IT1 T-S fuzzy fault estimation observer method and the IT2 T-S fuzzy fault-tolerant controller method, is proposed in this paper. This strategy can not only reduce the computational burden, but also obtain a less conservative result. Finally, the effectiveness of the mixed design approach is illustrated by an example.  相似文献   

12.
Advanced fault detection and accommodation schemes are required for ensuring efficient and reliable operation of modern wind turbines. This paper presents a novel approach in designing a fault detection and diagnosis (FDD) and fault-tolerant control (FTC) scheme for a wind turbine using fuzzy modeling, identification and control techniques. First, an improved gain-scheduled proportional-integral (PI) control system based on fuzzy gain scheduling (FGS) technique for multi-input and multi-output wind turbine system is designed. Then, to accommodate sensor faults and based on a signal correction algorithm, an active fault-tolerant control system (AFTCS) is developed as an extension of the gain-scheduled PI control system. The AFTCS exploits the fault information from a model-based FDD scheme developed using fuzzy modeling and identification method. The proposed schemes are evaluated by a series of simulations on a well-known large off-shore wind turbine benchmark in the presence of wind turbulences, measurement noises, and different realistic fault scenarios. All results indicate high effectiveness and robustness of the designed control systems in both fault-free and faulty operations of the wind turbine.  相似文献   

13.
In this paper a novel adaptive robust fault-tolerant sync control method is proposed for a two-slider system where two sliders are constrained by a flexible beam. At first the dynamic models of sync motion system subject to external disturbances and actuator faults are derived. In order to avoid the shortcomings of truncated model, the model of flexible beam is described by using infinite dimensional equation. Then based on the models a novel disturbance observer and an adaptive fault-tolerant control law are designed. The disturbance observer is used to estimate and cancel external disturbances. The adaptive fault-tolerant control is used to deal with the partial loss of effectiveness faults. Lyapunov functional approach is used to prove that the closed-loop system with the proposed control laws is uniformly bounded stable. Finally, some simulation results display that the proposed control laws can obtain excellent sync performance in the present of external disturbances and actuator partial loss of effectiveness faults.  相似文献   

14.
This paper investigates a novel strategy which can address the fault-tolerant control (FTC) problem for nonlinear strict-feedback systems containing actuator saturation, unknown external disturbances, and faults related to actuators and components. In such method, the unknown dynamics including faults and disturbances are approximated by resorting to Neural-Networks (NNs) technique. Meanwhile, a back-stepping technique is employed to build a fault-tolerant controller. It should be stressed that the main advantage of this strategy is that the NN weights are updated online based on gradient descent (GD) algorithm by minimizing the cost function with respect to NNs approximation error rather than regarding weights as adaptive parameters, which are designed according to Lyapunov theory. In addition, the convergence proof of NN weights and the stability proof of the proposed FTC method are given. Finally, simulation is performed to demonstrate the effectiveness of the proposed strategy in dealing with unknown external disturbances, actuator saturation and the faults related to the components and actuators, simultaneously.  相似文献   

15.
This paper studied an adaptive actuator fault-tolerant control scheme for the flexible Euler–Bernoulli beam in the three-dimensional space with output constraints and uncertain end load. The dynamic models are represented by partial differential equations (PDEs) and ordinary differential equations (ODEs). When part of the actuator fails, an adaptive control scheme is designed to regulate the vibration and stabilize the flexible three-dimensional Euler–Bernoulli beam. Barrier Lyapunov Function (BLF) is adopted to realize output constraints of the system. Adaptive control law with projection mapping operator is designed to compensate for the end load which is uncertain and bounded. The goal of this paper is to suppress the displacement of the flexible three-dimensional Euler–Bernoulli beam which can be constrained in given bounds under actuator fault and uncertain, bounded end load. It is confirmed that the proposed control scheme can deal with the vibration, adaptive actuator fault-tolerant control, uncertain and bounded end load and output constraints of the system simultaneously. Finally, numerical simulations illustrate the effectiveness and feasibility of the method.  相似文献   

16.
This paper studies the fault-tolerant model-free adaptive control (FT-MFAC) problem for a class of single-input single-output (SISO) nonlinear networked control systems (NCSs) under denial-of-service (DoS) attacks. A novel FT-MFAC framework is established with the consideration of DoS attacks and the sensor fault, in which DoS attacks obeying the Bernoulli distribution randomly happen in the sensor-to-controller channel and the sensor fault is approximated by the radial basis function neural network (RBFNN). Based on the proposed framework, an FT-MFAC algorithm that uses only input/output data is proposed to guarantee that the output tracking error is bounded in the sense of mean square. Finally, the effectiveness of the proposed algorithm is illustrated by a simulation.  相似文献   

17.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

18.
In this paper, the fault diagnosis (FD) and fault-tolerant tracking control (FTTC) problem for a class of discrete-time systems with faults and delays in actuator and measurement is investigated. In the first step, a discrete delay-free transformation approach is introduced for an constructed augmented system such that the two-point-boundary-value (TPBV) problem with advanced and delayed items can be avoided. Then, the optimal fault-tolerant tracking controller (OFTTC) is proposed with respect to an equivalent reformed quadratic performance index. Moreover, by using the real-time system output rather than the residual errors, a reduced-order-observer-based fault diagnoser for the augmented system is designed to diagnose faults in actuator and measurement, and solve the physically unrealizable problem of proposed OFTTC. Finally, the effectiveness of the proposed fault diagnoser and OFTTC is illustrated by a realistic design example for industrial electric heater.  相似文献   

19.
In this paper, a constrained control scheme based on model reference adaptive control is investigated for the longitudinal motion of a commercial aircraft with actuator faults and saturation nonlinearities. Actuator faults and constraints are both important factors adversely affecting the stability and performance of flight control systems. An adaptive adjustment law based on Lyapunov function is utilized to adjust the fault-tolerant control law. Both additive and multiplicative faults are considered in the designed controller to deal with the three types of actuator faults: locked in place, loss of effectiveness, and bias. Moreover, different techniques are implemented in the basic and fault-tolerant controller to anti-windup. Proofs for the stability of the two modified controllers which improve the performance of control system operating in the presence of actuator faults and saturations are proposed. Finally, a numerical example of the anti-windup fault-tolerant controller for a commercial aircraft is demonstrated. The stability and performance improvements can be accrued with the presented fault-tolerant control scheme.  相似文献   

20.
This paper considers the distributed adaptive fault-tolerant control problem for linear multi-agent systems with matched unknown nonlinear functions and actuator bias faults. By using fuzzy logic systems to approximate the unknown nonlinear function and constructing a local observer to estimate the states, an effective distributed adaptive fault-tolerant controller is developed. Furthermore, different from the traditional method to estimate the weight matrix, only the weight vector needs to be estimated by exchanging the order of weight vectors and fuzzy basis functions in the fuzzy logic systems. In contrast to the existing results, the assumption that the dimensions of input vector and output vector are equal is removed. In addition, it is proved that the proposed control protocol guarantees all signals in the closed-loop systems are bounded and all agents converge to the leader with bounded residual errors. Finally, simulation examples are given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号