首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用980 nm红外激光器分别激发通过水热法制备的LaF3以及水热烧结法合成的LaOF掺杂Tm3+和Yb3+离子的纳米晶体,获得了较强的蓝色上转换荧光.对比两种基质中稀土离子的发光情况,发现以LaOF作为掺杂基质时,蓝色上转换荧光发射较强.根据相关光谱学和晶体理论解释了荧光发射的过程及由于基质对称性的变化时引起荧光增强的原因.  相似文献   

2.
比较研究了Yb/Er(Ho)共掺六方相NaYF4和Y2O2S在980nm LD泵浦下的上转换发光.研究结果表明,NaYF4:20%Yb,1%Er的发光明显强于NaYF4:20%Yb,1%Ho,而Y2O2S:6%Yb,0.25%Ho与Y2O2S:6%Yb,0.5%Er却呈现相近的总发射强度.分析认为,Yb/Er和Yb/Ho之间的不同能量传递机制是导致上述现象的主要因素.  相似文献   

3.
用碳酸氢铵和氨水的混合溶液来作复合沉淀剂,采用共沉淀法制备了Tb3+共掺杂Al2O3:Eu粉体.用X射线衍射(XRD)对其相结构进行了研究,通过荧光分光光度计分析了Tb3+离子共掺杂浓度对Al2O3:Eu的发光性能的影响.研究结果表明:Th3+掺杂提高了γ-Al2O3的热稳定性.并观察到Tb3+→Eu3+的能量传递,最...  相似文献   

4.
采用溶胶-凝胶法成功制备Ce3+:ZnO - Al2O3 - SiO2(ZAS)微晶玻璃。通过X射线粉末衍射(XRD)、透射电镜(TEM)和荧光光谱仪(PL)系统研究了铈离子掺杂浓度与热处理温度对ZAS微晶玻璃的结构与发光性能的影响。结果表明,900℃热处理后在非晶基体中析出了平均晶粒尺寸为13nm的ZnAl2O4尖晶石纳米晶;ZAS微晶玻璃的荧光发射峰峰值位于381nm,属于Ce3+离子的5d→4f跃迁,当Ce3+掺杂浓度为3%时发光性能达到最佳。  相似文献   

5.
以五水硝酸铋、水杨酸、维生素B3为原料,摩尔比为1:2:1合成了一种新型的三元配合物.通过元素分析、摩尔电导、紫外光谱、红外光谱、热重与差热分析对其结构进行了表征,确定其分子式为[Bi(C7H5O3)2C6H4NO2(H2O)2].2H2O.实验表明,水杨酸和烟酸均脱去羧基的质子形成羧酸根与Bi3+离子双齿配位.根据TG-DSC曲线可以看出,当温度为81oC时配合物开始分解,首先失去2个结晶H2O,接着失去2个水杨酸根,再失去1个烟酸根,最后残余物为Bi和Bi2O3的混合物.  相似文献   

6.
用硝酸钆、钨酸钠、聚乙二醇为基本原料,采用水热法合成了NaGd(WO_4)_2荧光粉,然后通过掺杂Yb(3+)、Er(3+)、Er(3+)、Tm(3+)、Tm(3+)稀土离子获得上转换发光性能.使用X射线衍射和高分辨扫描电镜对样品结构和形貌进行了表征,通过实验研究了稀土离子掺杂比和反应温度对样品发光性能的影响,获得了在980 nm近红外激光激发下,可以发出暖白光的稀土上转换纳米发光材料.  相似文献   

7.
采用X射线衍射、扫描电镜和EDS能谱分析等手段研究了Bi2O3对低温燃烧法制备的非化学计量组成的MgO-Al2O3-SiO2三元系堇青石基微晶玻璃的相变和烧结特性的影响.研究结果表明:添加Bi2O3能明显促进μ-堇青石向α-堇青石的相转变或促进α-堇青石相的直接析晶,使α-堇青石相的析出温度从1050°C降到900°C;Bi2O3的加入可促进玻璃粉体的烧结致密化;Bi2O3的添加量以5%(质量分数)左右为宜,加入量太大会阻止微晶玻璃的晶化.  相似文献   

8.
用固相法制备不同浓度的Na~+、Li~+和Eu~(3+)共掺Gd_2O_3纳米粉末,测量了该粉体的XRD、SEM、激发光谱和发射光谱,分析了样品的微观结构、形貌,研究和讨论了不同浓度的Li~+、Na~+、Eu~(3+)共掺杂Gd_2O_3纳米粉体的光致发光特性.实验结果表明,与Gd_2O_3:Eu~(3+)相比,单掺Li~+、Na~+和Li~+、Na~+共掺Gd_2O_3:Eu~(3+)的纳米粉的发光强度显著提高.  相似文献   

9.
以2、4——二氯苯酚光催化降解为探针反应,比较了Bi2O3和Bi2O3—V2O5的光催化降解活性,并对其进行正电子湮没研究发现:Bi2O3-V2O5有较多的表面缺陷数目,缺陷位电子密度大,催化活性好;对不同焙烧温度下Bi2O3-V2O5的催化活性和正电子湮没进行研究分析,结果表明,在850℃下焙烧Bi2O3—V2O5的表面缺陷数目多,光催化活性好.  相似文献   

10.
借助水热法,以氯化钇、柠檬酸钠、磷酸钠为基本原料合成了YPO_4纳米颗粒,然后通过掺杂Er(3+)、Yb(3+)、Yb(3+)、Tm(3+)、Tm(3+)稀土离子获得上转换发光性能.实验研究了反应温度、反应时间、掺杂比和烧结温度对样品发光性能的影响,获得了在红外激发下,可以发出暖白光的稀土上转换纳米发光材料.  相似文献   

11.
1 Introduction Inrecentyears ,high powerlaserdiodeshavebeenemployedaspumpingsourceswithaviewtodevelopcompactup conversionvisible lasersystems .Thefre quencyconversionofinfraredlighttovisiblelighthasbeenextensivelyinvestigatedforrare earthdopedcrystalsandg…  相似文献   

12.
采用第一性原理模拟计算了完整斜钨矿结构PbWO4晶体的电子结构和含有氧空位斜钨矿结构PbWO4晶体的电子结构.通过对两者进行对比,发现晶体中的氧空位陷获电子形成EF+心,在禁带中引入一个附加能级,导致在620nm处有一定吸收.提出PbWO4晶体600—800nm吸收带与晶体中的氧空位有关,当晶体中同时含有白钨矿和斜钨矿这两种结构的套构时,由氧空位引起的吸收仍在黄光区.  相似文献   

13.
1 Introduction Eu3 :Y2 SiO5crystalisusedasanewluminescencematerial.Becausethenuclearmomentsofthecom positeelementsaresmallinthiscrystal,thespin spininteractionbetweenguestandhostionsisminimized .Theguest hostinteractiondoesnotcauselargeaddi tionallinebroade…  相似文献   

14.
Up-conversion processes for the blue, green and red emissions were found two-photon phenomenon, known as the cooperative phenomenon. This phenomenon was assisted by Nd3+ → Yb3+ → Ho3+ energy transfer. The strong green emission due to the Ho3+ : (5F4, 5S2)→ 5I8 transitions was observed in Nd3+-Ho3+ co-doped ZrF4-based fluoride glasses under 800 nm excitation. As an attempt to enhance Ho3+ up-conversion luminescences in the Nd3+ – Ho3+ co-doped ZrF4-based glasses, Yb3+ ions were added to the glasses. As a result it was found that, in 800 nm excitation of 60 ZrF4. 30BaF2. (8-x)LaF3. lNdF3. xYbF3. 1HoF3 glasses (x=0 to 7), sensitized up-conversion luminescences are observed at around 490 nm (blue), 545 nm (green), and 650 nm (red), which correspond to the Ho3+ : 5F35I8, ( 5F4, 5S2)→5I8 and 5F55I8 transitions respectively. The intensities of the green and red emissions in a 3 mol % YbF3-containing glass were about 50 times stronger than those glasses without YbF3. This is based on sensitization due to Yb3+ ions. In particular, the green emission was extremely strong and the Nd3+-Yb3+-Ho3+ co-doped ZrF4-based glasses have a high possibility of realizing a green up-conversion laser glass. In this paper the up-conversion mechanism in the glasses is discussed in detail.  相似文献   

15.
测量了1.62at%-Er^3+ Y0.5Gd0.5,VO4晶体的吸收光谱和荧光发射谱,光谱显示该晶体在382、525、1536nm有很强的偏振光吸收峰,且偏振光(E∥C)吸收远强于σ偏振光(E⊥C)吸收;通过计算可得,吸收截面分别为2.95013×10^-20cm^2、2.57757×10^20cm^2和1.15504×10^-20cm^2;其荧光发射(^4I15/2→^4I11/2跃迁)峰值波长在1524nm,半高宽度为72nm;415/2^I→^4I11/2跃迁的荧光寿命为3.1ms,光谱特性表明Er3^+:Y0.5,Gd0.5,VO4晶体是潜在的高效率激光晶体材料.  相似文献   

16.
Siliconcarbide (SiC)ceramicmaterialsareusefulad vancedmaterialsinmanyfields,suchasmedicalbiomateri als ,hightemperaturesemiconductors ,synchrotronopticalel ementsandhighstrength /lightweightstructuralmaterials[1] .However,theactualapplicationisstilllimitedduetoitslowreliability ,highmachiningcosts[2 ] .Gelcastingprovidesane conomicalandfeasiblenet shape forminghomogeneousandflawlessgreenbodieswithcomplexgreenshapes.  Gelcastingconsistsofin situpolymerizationthroughwhichamacromolecularnetwor…  相似文献   

17.
用溶剂热法、150℃反应12h成功合成了分散性良好的LaP04:Ce^3+/Tb^3+荧光晶体.XRD数据表明,合成了六方晶系的LaP04:Ce^3+/Tb^3+晶体(PDF 84-0600).pH为9.0时,合成晶体的离子最佳摩尔比为nLa^3+∶nCe^3+∶nTb^3+=6∶3∶1.根据荧光光谱可知,LaP04:Ce^3+/Tb^3+在270nm处有最强激发峰,在545nm处有最强发射峰,对应于Tb^3+的5 D4→7F5跃迁.  相似文献   

18.
通过溶胶-凝胶法制备出不同晶型和相应颗粒尺寸的纳米氧化铝粉体;通过XRD分析及TEM表征,分析勃姆石凝胶-经干燥烧结后的氧化铝晶型相变及相应颗粒尺寸分布变化,800℃至1050℃γ-Al2O3向θ-Al2O3相变过程中颗粒尺寸变化不大,到完全相变为α-Al2O3时,颗粒尺寸急剧增大,并有大颗粒形成;同时对不同晶型和对应的颗粒尺寸纳米氧化铝粉体样品的红外吸收性能进行了研究,结果表明:带边吸收的蓝移、红移主要由晶型和量子尺寸效应共同作用,但晶型起主要作用。  相似文献   

19.
制备了一个新的钴的[Co(C4H3N2CoO2)2(H2O)4](C4H4N2CoO2=4,6-二羟基嘧啶),通过X-射线衍射、热重分析和荧光光谱对配合物的结构和性质进行了测试和表征.晶体结构分析表明,该晶体属于单斜晶系,空间群C2/c,晶胞参数:a=13.528(3),b=7.2240(13),c=13.001(2);α=90°,β=109.448(2)°,γ=90°;V=1198.0(4)3,μ=1.485mm-1,Dc=1.958 Mg/m3,F(000)=724,R=0.0302,wR=0.0894(I>2σ(I)).在配合物的结构单元中,Co原子与两个4,6-二羟基嘧啶和四个水分子配位,形成略有畸变的拉伸八面体配合物.配合物的结构单元[Co(C4H3N2CoO2)2(H2O)4]之间进一步通过分子间氢键和π-π堆积作用相互交叉连接在一起形成三维超分子化合物.  相似文献   

20.
Notation Allquantitieswererestrictedtoonemoleunlessotherwisespecified.GGibbsfreeenergyofPhase°GiGibbsfreeenergyofpurecomponentiofphaseximolefractionofcomponentiEGexcessfreeenergyofphasekjjthorderparameterofRedlichKisterpolynomialΔGf(i)fusionfree…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号