首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
反余切,反余弦函数有如下关系式: arc ctg(-x)=π-arc ctgx,x∈(-∞,+∞) arc cos(-x)=π-arc cosx,x∈[-1,1] 本文以第一个公式为例,利用图象的几何直观性,介绍两种证明方法,可在学生复习时用。∵ y=arc ctgx是y=ctgx (x∈(0,π))的反函数,其图象关于直线y=x对称,而y=ctgx(x∈(0,π))的图象关于点(π/2,0)对称,∴y=arc ctgx的图象关于点(0,π/2)对称。  相似文献   

2.
课本中给出了奇偶函数的定义:f(x)是奇函数f(-x)=-f(x),f(x)是偶函数f(-x)=f(x).它们的图象特征是:奇函数的图象关于原点对称,偶函数的图象关于y轴对称.关于原点(y轴)对称的函数是奇(偶)函数.把以上结论加以推广:就有:命题1:设函数y=f(x)的定义域为R,且满足条件f(a x)=f(b-x),则函数y=f(x)的图象关于直线x=a2 b对称.命题2:定义在R上的函数y=f(x)满足条件f(x a)=-f(b-x),则y=f(x)的图象关于点a2 b,0对称.这两个命题是关于同一个函数图象本身的对称性,对于两个函数图象之间的对称性,有下列结论:命题3:定义在R上的函数y=f(x),函数y=f(a x)与y…  相似文献   

3.
第9题 函数y=xcosx+sinx的图象大致为(). 解析 结合四个选项,会发现有三个选项均为奇函数,所以先考虑验证函数奇偶性,由f(-x)=-xcos(-x)+sin(-x)=-xcosx-sinx=-f(x),得该函数为奇函数,排除B选项;剩余的三个选项x<0时,符号有差异,所以验证符号:x∈(-π/2,0)时,cosx>0,x<0,sinx<0,xcosx<0,所以x<0时,y<0,排除C选项;剩余两个选项当x>0时,符号不同,所以取特值x=π,由πcosπ=-π,sinπ=0,得x=π时,y=-π排除A选项,答案为D.  相似文献   

4.
关于函数图象的自对称和互对称,在考试中经常遇到,也有很多结论,由于这些结论比较多,又抽象,容易混淆,所以同学们记不住它们,在解决对称问题时往往力不从心,畏惧函数图象的对称问题.一、函数图象的自对称先理解两个复合函数的结论:若函数y=f(x+a)是偶函数,当且仅当f(-x+a)=f(x+a);若函数y=f(x+a)是奇函数,当且仅当f(-x+a)=-f(x+a).偶函数关于y轴对称,奇函数关于原点对称.即如果函数对定义域内的任意x,都有  相似文献   

5.
我们知道复合函数y=sin(arc sinx)在定义域x∈[-1,1]上都有sin(arc sinx)=x.对于复合函数y=arc sin(sinx)的问题,现行教材仅讨论了x∈[-πc/2,π/2]时,arc sin(sinx)=x的情形,实际上,这个复合函数的定义域是x∈R,而值域是y∈[-  相似文献   

6.
由奇函数、偶函数的图象定理知:若f(-x)=-f(x),则函数f(x)的图象关于原点对称;若f(-x)=f(x),则函数f(x)的图象关于y轴对称. 下面我们研究此结论的推广情况.  相似文献   

7.
<正>我们知道,奇函数图象关于原点对称;偶函数图象关于y轴对称.用数学符号语言可以描述为:若函数f(x)对于定义域内的任意x,都有f(-x)=-f(x)(或f(-x)=f(x))成立,则称函数f(x)为奇函数(或偶函数).这一定义从数的方面描述了奇(偶)函数图形的特征,有助于数形结合解决问题.一、函数奇偶性与图象对称性的推广利用函数图象变换的有关规律,结合函数奇偶性的定义与性质,我们不难得到函数图象对称性的如下两个结论.  相似文献   

8.
六年制高中课本《代数》第一册谈到偶函数图象时,有下面的定理: 定理1 偶函数的图象关于y轴成轴对称图形;反过来,如果一个函数的图象关于y轴成轴对称图形,那么这个函数是偶函数. 定理1也可叙述为:适合条件f(-x)=f(x)的函数y=f(x)的图象关于直线x=0成轴对称图形;反过来,如果函数y=f(x)的图象关于直线x=0成轴对称图形,那么这个函数适合条件f(-x)=f(x).  相似文献   

9.
函数奇偶性的定义为:设y=f(x)(x∈A),如果对于任意x∈A,都有f(-x)=f(x),则称函数y=f(x)为偶函数;如果对于任意x∈A,都有f(-x)=-f(x),则称函数y=f(x)为奇函数.  相似文献   

10.
深入分析函数奇偶性的定义特点,可以得到以下多个方面的理解.分述如下: 1.从定义理解 设y=f(x),x∈A,如果对于任意x∈A,都有f(-x)=f(x),则称函数y=f(x)为偶函数;如果对于任意x∈A,都有f(-x)=-f(x),则称函数y=f(x)为奇函数.  相似文献   

11.
对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),则称f(x)为这一定义域内的奇函数,奇函数的图象关于原点对称.如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称f(x)为这一定义域内的偶函数,偶函数的图象关于y轴对称.  相似文献   

12.
性质一一个偶函数的图象若关于直线x=a(a≠0)对称,则这个函数为周期函数,且2a为它的周期. 证明设f(x)是偶函数,因其图象关于y轴对称,所以,如果点(x,y)在图象上,则点(-x,y)也在图象上,即f(-x)=f(x).又因其图象关于直线x=a对称,所以点(x+2a,y)也应在图象上,即f(2a+x)=f(-x),于是f(x)=f(-x)=f(x+2a)对于一切x都成立,f(x)为周期函数,2a为它的周期.  相似文献   

13.
函数图象的性质给我们解题提供了很大的方便。函数图象的主要性质有 1.奇函数的图象关于原点成中心对称图形。 2.偶函数的图象关于y轴成轴对称图形。 3.互为反函数的图象关于直线y=x对称。 上面三个性质及应用在教材中均已介绍,这里不再叙述。下面主要讨论函数图象的另一性质及应用。 4.已知函数y=f(x)满足f(a x)=f(a-x)则函数y=f(x)的图象关于直线x=a对称。 证明 设M(x′,y′)是函数y=f(x)图象上的任意一点,M关于直线x=a的对称点为M′(2a-  相似文献   

14.
一、考查函数的奇偶性对于函数f(x)=Asin(ωx+φ)(φ≠0),当φ=kπ(k∈z)时,函数f(x)为奇函数;当φ=kπ+π/2(k∈z)时,函数f(x)为偶函数;否则函数f(x)既不是奇函数也不是偶函数.例1函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ=  相似文献   

15.
对称是函数图象的重要性质之一。 1.若函数 y=f(x)适合条件f(-x) =f(x)(偶函数),则函数图象关于y轴成轴对称图形。 (包括多值函数,下同) 2.若函数y=f(x)适合条件f(m-x)=f(m x),则函数图象关于直线x=m成轴对称图形。 3.若函数y=f(x)适合条件f(x)=-f(x),则函数图象关于x轴成轴对图形。 4.若函数 y=f(x)适合条件x=f(y),则函数图象关于直线y=x成轴对称图形。  相似文献   

16.
一、函数概念上理解致错例1、函数f(x)=1-x2姨|2-x|-2是()(A)奇函数而不是偶函数.(B)偶函数而不是奇函数.(C)奇函数又是偶函数.(D)非奇非偶函数.错解:∵f(-x)=1-(-x)2姨|2+x|-2=1-x2姨|2+x|-2,∴f(-x)≠f(x)且f(-x)≠-f(x).∴f(x)为非奇非偶函数.故选(D).评析:①错在忽略了函数定义域.函数定义应满足1-x2≥0,|2-x|-2≠0 .即-1≤x≤1,x≠0 .则f(x)=1-x2姨(2-x)-2=-1-x2姨x.∴f(-x)=-1-x2姨-x=1-x2姨x=-f(x),f(x)为奇函数.故选(A).②判断函数奇偶性,首先要注意函数的定义域是否关于原点对称,是关于原点对称再判断f(-x)与f(x)的关系…  相似文献   

17.
函数是中学教学的一条主线,也是高中数学的核心内容,要真正掌握函数,其中最主要的就是函数的基本性质,并通过其性质解决函数问题,本文将通过函数的奇偶性及其综合应用探讨函数中的有关问题. 一、对函数的奇偶性定理的探究 定义:(1)一般地,如果对于函数y =f(x)的定义域内的任意一个x,都有f(--x)=f(x),那么称函数y,=f(x)叫做偶函数. (2)如果对于函数y=f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数y=f(x)就叫做奇函数. 对定义的理解:  相似文献   

18.
函数中的对称问题是历年高考热点内容之一,这类问题涉及的基本方法和常见题型,现行教材中没有利用函数的性质进行系统地研究,下面加以例析.一、与奇、偶函数有关的对称问题例1函数y=x+sin x,x∈[-!,!]的大致图像是()解:结合图像由性质1,2知,(A)、(D)是奇函数,(B)是偶函数,而函数y=x+sin x既不是奇函数,也不是偶函数,即图像既不关于原点对称,也不关于y轴对称,因而选(C).二、互为反函数之间的对称问题例2函数y=cosx+1(-!≤x≤0)的反函数是()(A)y=-arccos(x-1)(0≤x≤2)(B)y=!-arccos(x-1)(0≤x≤2)(C)y=arccos(x-1)(0≤x≤2)(D)y=!+arccos…  相似文献   

19.
函数的奇偶性不只给函数的作图和研究函数的其他性质带来方便,而且在解题中还有奇妙的作用。 [例1] 已知:实数x,y满足(3x+y)~5+x~5+4x+y=0。求证:4x+y=0。证明:已知的等式即是(3x+y)~5+3x+y=-(x~5+x), ①设f(x)=x~5+x,则①式化为f(3x+y)=-f(x)。显然,f(x)是奇函数,从而由上式得f(3x+y)=f(-x)。②又f(x)在R上单调上升,且对应法则f是R到R的一一对应,故②式等价于3x+y=-x。∴ 4x+y=0。 [例2] 解方程  相似文献   

20.
函数的性质     
本讲介绍函数的奇偶性,单调性,周期性,有界性,凹凸性及其在数学竞赛中的应用. (一)奇偶性1.若定义在I上的函数f(x)满足f(-x)=-f(x),则称f(x)为奇函数;其图象关于原点对称,若f(-x)=f(x),则称f(x)为偶函数;其图象关于y轴对称.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号