首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
三次函数f(x)=ax3+bx2+cx+d(a≠0,x∈R)的导函数是二次函数,这就促成了它成为新旧教材有机结合的重要载体。因此,了解和掌握三次函数的基本性质就显得很有必要,本文对此作一些探讨。1、定义域、值域f(x)是处处连续且可导函数,定义域x∈R,值域y∈R。2、奇偶性f(x)不是偶函数;f(x)是奇函数的充要条件是b=d=0(即偶次项系数全为零)。3、单调性、极值对三次函数求导,f′(x)=3ax2+2bx+c.根据其判别式可得出:(1)当Δ=4(b2-3ac)≤0时,f(x)是R上的单调函数,不存在极值。且当a>0时单调递增;当a<0时单调递减。(2)当Δ=4(b2-3ac)>0时,f(x)不是R上的单…  相似文献   

2.
我们都知道,若有曲线C1:f1(x,y)=0,C2:f2(x,y)=0,则方程f1(x,y)+λf2(x,y)=0表示通过C1,C2两条曲线交点的曲线系.人们常用这个曲线系方程来解答有关两曲线交点的问题.但在使用这个关系式时,稍有不慎,往往会犯以下几方面的错误.   ……  相似文献   

3.
反例即是与正命题相矛盾的特列.如在《高代》教学中恰当运用反例,能使学生从模糊思维中豁然开朗,达到事半功倍之效.本文通过实例阐明反例在《高代》课教学中的作用.1.反倒是深化根念教学强有力的工具概念教学中,正面例子固然重要,若恰当利用反例强化概念,能使学生抓住概念的本质属性,克服片面认识,起到正面例子难以起到的作用.例如:教材中首先涉及到的映射的概念,不少同学片面认为“集合A中元素与集合B中元素的对应法则就是A到B的映射.”为帮助学生纠正这种错误,笔者提出问题:A={x|x∈R且X≥0},B=R,对于每一x∈A,f(x)=±2~(1/2),问f是否是A到B的映射?有些学生认为f是A到B的映射,再提问:当x>0时,f(x)等于什么?通过讨论,学生发现A中每一元素与B中元素是有对应关系,但当x>0时,f(x)不是由x唯一确定的,不符合映射定义,那f不是A到B的映射.通过上例的分析使学生体会到映射概念的本质属性是“对A中每一元素x,有B中唯一确定的元素y与之对应”.再如:向量组线性无关的概念,有些同学错误地认为“如果有完全都是零的数使向量组的线性组合为零,那此向量组线性无关”,为纠正错误,一简单例子就能说明问题.如.a_1=(2,0,-9),a_2=(0,8,3),a_3=(-4,0,18),有K_1=K_2=K_3=0使K_1a_1+K_2a_2+K_3a_3=0,但它们确定线性相关的.  相似文献   

4.
用多种方法求出cauchy型函数方程f(x+y)=f(x)+f(y)的连续解,并给出R上的不连续解.  相似文献   

5.
众所周知,连续函数的介值定理是分析中最重要、最基本的结果之一,然而在理论和实际中经常遇到不连续函数,此时上述定理已不适应。本文的目的是给出只有第一类不连续点的函数的介值定理,由此得到微分、积分中值定理的相应推广。 定理1 设f(x)是定义在[a,b]上只有第一类不连续点的函点(即x_0∈[a,b],f(x_0±0)=lim f(x)存在),为方便计f(a-0)=f(a+0),f(b+0)=f(b-0),那么对r∈[f(a+0),f(b-0)](或r∈[f(b-0),f(a+0)]),存在C∈[a,b]以及非负数α、β满足α+β=1和r=αf(c-0)+βf(c+0)。 证 假若f(a+0)=r或f(b-0)=r,则定理显然成立(只须取c=a或c=b,α=1-β,α,β>0),因此,不失一般性设f(a+0)相似文献   

6.
求函数表达式在初等数学中占有一定的比例,中学教材中介绍的求函数表达式的几种方法不能完全解决学生在课外阅读中碰到的一些求函数表达式的问题.为了提高学生学习教学的兴趣和解题能力,本文总结介绍几种求函数表达式的方法,供数学爱好者参考.1.定义法即根据函数概念及其运算法则求函数表达式的方法.例1 设f(n)=2n+1,g(n)=3 当n=1时 f〔 g(n-1) 〕当n≥2时(其中n∈N,求函数g(n)的表达式.解:∵当n≥2时.g(n)=f〔g(n--1)〕=2〔g(n-1)+1〕+1∴g(n)+1=2〔g(n-1)十1〕∴(g(n)+1)/(g(n-1)+1)=2令g(n)+1=h(n)(n∈N)则g(n-1)+1=h(n+1),(n≥2且n∈N)  相似文献   

7.
引 言 在代数中,众所周知有如下命题成立:[原命题]:若 ab=1(a≠-1,b≠-1),则: 1/(1+a)+1/(1+b)=1 (1) a/(1+a)+b/(1+b)=1 (2) 文[1]笔者给出原命题的推广结论:[推广Ⅰ]:若multiply from k=1 to n(x_k)=1,且f(k)=1+x_k+x_kx_(k+1)+…x_kx_(k+1)…x_nx_1x_2…x_(k-2),(f(k)≠0),并设f_v(k)为多项式 f(k)的第i项,则:  相似文献   

8.
本文以初等方法,探讨不定方程x~p+y~p=z~p与x~(2p)+y~(2p)=z~(2p).1977年,法国数学家Terjanian得到了费尔马猜想偶指数情形的最好结果,他证明了不定方程x~(2p)+y~(2p)=z~(2p),xyz≠0,(x,y)=1,p>3是奇素数(1)如果有整数解x、y、z,那么一定有2p|x或y.1981年,Rotkiewicz(发表于Colloq.Math.45(1981),1:101—102;参见《Math.Rev.》84h:10024)把这个结果改进为8p~3|x或y.  相似文献   

9.
定理 设函数f(x)在点x_0的近旁有直到(n+1)阶导数,并且f′(x_0)=f″(x_0)=……=f(K-1)=0,而(?)≠0,其中k≤n,则(一)函数增减及极值的一般判定法如下:k f(?)f (x)  相似文献   

10.
高中数学中的恒成立问题,涉及到函数的性质、图象,渗透着换元、化归、数形结合、分类讨论、函数与方程等重要数学思想,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点.恒成立问题大致可分为以下两类:函数类及变量分离类.一、函数类1、一次函数 给定一次函数y=f(x)=ax b(a≠0)若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于f(m)>0,f(n)>0.若在[m,n]内恒有f(x)<0,则有f(m)>f(n)>例1、对于满足|m|≤2的所有实数m,不等式2x-1>x2-1)恒成立,求x的取…  相似文献   

11.
本文从一道高考题出发,运用了数学分析理论,较为深刻地揭示了方程f(x+y)=f(x)@f(y)解函数特性,导出了函数f(x)的重要解析特征.  相似文献   

12.
众所周知周期性是函数的重要性质之一,它应用广泛、技巧性强,不易掌握,并且它的判定与求解是历届高考的考点,然而教材除了定义外未明确给出具体的判定与求解方法,因此本文归纳出若干判定与求解方法如下:基本根念和性质定义:对于函数f(X),若存在常数T(T≠0)使当X取定义域E内每一个值时,f(x+T)=f(x)= f(x-T)都成立,则称f(x)是周期函数,T为其一周期.性质:1.周期函数的定义域E是上下无界.2.周期函数必有正周期.3.若函数f(x)存在最小正周期T,则KT(k∈E,k≠0)是它的全部周期.4.若函数f(x).(x∈E)以T为周期,则它在(x-T,x),(x,x+T)上其图象相同.常用判定法和求解理论依据,周期函数的定义、性质、图象.一、直接推导法——例1.f(x)=|cosx|(广东88年高考题)  相似文献   

13.
引言 凸函数是高等数学中最常见的一类函数,根据凸函数的特性,可推导并证明凸函数所特有的一类不等式,并推广出一系列重要的不等式。 1凸函数不等式 定义:设函数f(x)在区间I上有定义,若对于任意点xl,x:任I和入e(0,l)有 f(厄一+(1一久)xZ))汀(x一)+(1一又)·f(xZ)则称f(x)在I上是凸函数。定理1:设f(x)是区间I上的凸函数,久:,七,…,礼是一组正数,且艺、,=1,则对于任意点x,,xZ,…, 短=1x,el有又,几oxo+几*+一x;+一= 乏反,、、_‘二JA环i下八k+卜q+l一又oj(xo)+几川f(几十l)一*。,(客六小入*十一f(八+l)) f几:_,几。l丽j Lx,)+半f(xZ)+八0…  相似文献   

14.
在近几年的数学高考试题中,时常出现对含参变数的方程的解进行讨论的问题。许多学生由于分析问题、解决问题的能力不强,对这类问题往往讨论得不完全甚至不知如何着手。本文利用“方程f(x)=g(x)的解是函数y=f(x)与y=g(x)的图象的交点的横坐标”这一结论来讨论这类问题。 例1、讨论关于X的方程x+m=(9-x~2)~(1/2)的实数解的个数。 解:方程x+m=(9-x~2)~(1/2)的实数解的个数,  相似文献   

15.
研究如下的三维Kirchhoff型问题{-(a+b∫Ω|u|2d)xΔu=|u|q-1u+λ|u|p-2u|x|s,x∈Ω,u=0,x∈Ω,其中,Ω是R3中具有光滑边界的有界区域,0∈Ω,0q1,0≤s1,4p2*(s)=2(3-s),a,b,λ0.运用变分方法,证明当λ0足够小时,这一方程至少有2个正解.  相似文献   

16.
广泛联想,不拘泥于常规、常法,善于开拓、变异;由此及彼、由表及里,是从多道寻求解答的一种思维方式.例:设x·y∈R,求证:2~(3x~2+3y~2-48x-18y+219)+2~(3x~2+3y~2-12x+30y+87)>9/2~(1/3)本题条件单一,结论复杂.如果应用证明不等式的一般方法难以奏效.审察题目的表现形式,看不出有何特点.因此,将题目的结论进行等价变形.不等式的两边同除以2~(1/3),得2~(x~2+1y~2-16x-6y+73)+2~(x~2+y~2-4x+10y+29)>9配方:2~(x-8)~2+(y-3)~2)+2~(x-2)~2+(y+5)~2)>9这时题目的特点出现了,联系中学所学知识,可以发生一系列的联想,得到一些通常不容易想到的简捷证法.联想一 因为复数z=a+bi的模|z|=2~(a~2+b~2)不等式左边与此类似.所以可以联想复数模的几何意义,用复数不等式来证本题.  相似文献   

17.
设在空间已经引入了虚元素,由三元二次方程:F(xyz)=a_(11)x~2+a_(22)y~2+a_(33)Z~2+2a_(12)xy+2a_(13)xz+2a_(23)yz+2a_(14)x+2a_(24)y+2a_(34)z+a_(44)=0 (1)所表示的图形称为二次曲面.使用记号 F_1(xyz)=a_(11)x+a_(12)y+a_(13)z+a_(14)F_2(xyz)=a_(12)x+a_(22)y+a_(23)z+a_(24)F_3(xyz)=a_(13)x+a_(23)y十a_(33)z十a_(34)F_4(xyz)=a_(14)x十a_(24)y十a_(34)z+a_(44)  相似文献   

18.
拉格朗日乘数法,是解决条件极值问题的著名方法,但该法的计算量很大,计算过程冗长、繁杂.本文将从数形结合的角度出发,对两类常见的条件极值问题,提供一种简单的解法.1 求函数f(x,y)=(x-x_0)~2+(y-y_0)~2+p在条件Ax+By+C=0下的最小值.对此类问题,我们可用下法求解:取xy平面上的一点P_0(X_0,Y_0),直线L:Ax+By+C=0及L上一动点P(x,y),如左图:设P_0到L的距离为d,由于“点到直线的距离不大于点到直线上任意一点的距离”,故显然有│p_0p|≥d.应用两点间距离公式及点到直线的距离公式,可得:[(x-x_0)~2+(y-y_0)~2]~(1/2)≥│Ax_0+By_0+C│/(A~2+B~2)(1/2)所以有:  相似文献   

19.
若波源不在原点,沿x轴正方向传播的平面简谐波波动方程为y=A cos[ω(t+l-x/u)+ψ],沿x轴负方向传播的平面简谐波波动方程为y=A cos[ω(t-l-x/u)+ψ].  相似文献   

20.
研究了半线性椭圆型偏微分方程-Δu+B.gradu+a(x,u)=0u|Ω=g∈W2-1/p,p(Ω)的反问题的解的整体惟一性.证明过程中应用了线性化方法和Dirichlet——Neumann映射.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号