首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
积分中值定理的推广   总被引:2,自引:0,他引:2  
积分中值定理是数学分析课程中的基本定理之一,从教材叙述的积分中值定理入手,给出积分中值定理的另一种形式,并对此定理加以推广,得出在原定理中函数f在闭区间[a,b]上连续这一条件可以减弱为f(x)在[a,b]上存在原函数即可。  相似文献   

2.
微分中值定理主要包括拉格朗日中值定理,罗尔中值定理以及柯西中值定理。本文分别研究这三个定理的某些重要应用。  相似文献   

3.
本文的目的是借助积分学的基本公式,即牛顿——莱布尼兹公式。建立微分中值定理与积分中值定理之间的某种联系。 积分学的基本公式告诉我们: 若函数f(x)在区间[a、b]上连续,且F(x)是f(x)的原函数,则  相似文献   

4.
拉格朗日建立了一个函数的微分中值定理,柯西建立了两个函数间的微分中值定理,零陵师专何志敏同学把微分中值定理推广为三个、四个、任意有限个函数间的中值定理:定理:设(1)n个函数f(x),i=1,2,……n,在闭区间[a,b]上连续;  相似文献   

5.
众所周知,连续函数的介值定理是分析中最重要、最基本的结果之一,然而在理论和实际中经常遇到不连续函数,此时上述定理已不适应。本文的目的是给出只有第一类不连续点的函数的介值定理,由此得到微分、积分中值定理的相应推广。 定理1 设f(x)是定义在[a,b]上只有第一类不连续点的函点(即x_0∈[a,b],f(x_0±0)=lim f(x)存在),为方便计f(a-0)=f(a+0),f(b+0)=f(b-0),那么对r∈[f(a+0),f(b-0)](或r∈[f(b-0),f(a+0)]),存在C∈[a,b]以及非负数α、β满足α+β=1和r=αf(c-0)+βf(c+0)。 证 假若f(a+0)=r或f(b-0)=r,则定理显然成立(只须取c=a或c=b,α=1-β,α,β>0),因此,不失一般性设f(a+0)相似文献   

6.
关于积分中值定理"中间点"的渐近性   总被引:1,自引:0,他引:1  
文 [1 ] 给出了当区间长度趋于无穷时积分中值定理“中间点”的渐近性质 ,本文改进了[1 ] 中主要结果的条件 ,推广了 [1 ] 中的结果。  相似文献   

7.
Roll定理、Lagrange中值定理和Cauchy中值定理成立于函数在 [a、b]上连续、在 (a、b)上可导 ,其中Roll定理还要求函数在区间端点处的函数值相等 .若将Roll定理可导的条件改为左导数 (或右导数 )存在且连续 ,则此三个定理也成立 .  相似文献   

8.
在已知微分中值定理“中值点”存在和位置的基础上,进一步研究微分中值定理“中值点”的个数问题,并给出了有唯一中值点,有m个中值点和至少有一个中值点的充分条件。  相似文献   

9.
关于积分第二中值定理“中间点”的渐近性质   总被引:1,自引:0,他引:1  
文「1」给出了区间长度趋于无穷时积分中值定理“中间点”的渐近性质。本文在一定条件下给出了当区间长度趋于无穷时积分第二中值定理“中间点”的渐近性质。  相似文献   

10.
《华中师范大学学报》(自然科学版)第二十卷第一期(总第三十七期)(一九八六年三月)上刊登了李逊的《中值定理的推广》一文,该文利用行列式作辅助函数,讨论拉格朗日中值定理和哥西中值的推广,得到了四个定理.由于定理1与定理3分别是定理2与定理4的特例,所以该文的结果主要是定理2与定理4.现抄录于下:  相似文献   

11.
本文研究了当区间长度趋于无穷大时 ,推广的Cauchy微分中值定理“中间点”的渐近性。  相似文献   

12.
大多数高等微积分教科书里,微积分学基本定理都是如下的形式:定理 若函数f(x)在区间[a,b]上黎曼可积,函数g(x)在[a,b]上满足关系式g′(x)=f(x),则integral from n=a to b (f(x)dx=g(b-)g(a))本文的目的是给出这个定理的两个加强形式.在我们的第一个结果里,仅假设函数f(x)是g(x)的右导数.函数g(x)在点x处的右导数由下式定义:  相似文献   

13.
关于积分第二中值定理“中间点”渐近性定理的注记   总被引:1,自引:0,他引:1  
本文在较(7)中定理6更弱的条件下,给出了积分第二中值定理“中间点”的渐近性和相应定理及其证明。  相似文献   

14.
数学分析中有三个中值定理,即罗尔(Rolle)定理、拉格郎日(Lagrange)中值定理和柯西(Cauchy)中值定理,其中Lagrange中值定理是Rolle定理的推广,Cauchy中值定理又是Lagrange中值定理的推广。可见,在这三个微分中值定理中,Cauchy中值定理是“最广”的一个”。在一般的数学分析教材中,Lagrange中值定理扣Cauchy中值定理的证明方法是先构造一个满足Rolle定理条件的函数,然后借助于Rolle定理加以完成。本文用逐步逼近的方法给出Cauchy中值定理的一个新的证明。  相似文献   

15.
闭区间[a,b]上的连续函数一定能取到最大和最小值.那些点有可能是最值点呢?现行教材《微积分》一书(由马兴波主编,西南交通大学出版社出版)指出:[a.b]上连续函数的最大(小)值仅可能在区间内的极值点和区间端点处取得.我认为这种说法是不正确的.事实上有些连续函数,其最值也可以在非极值点和非端点处取得.例如函数在闭区间[3/2,6]是连续的,但是最小值是在小闭区间[3,4]上的所有点处取得。根据极值点的定义知[3,4]上的点不是极值点.函数图形如右图:上书还指出:在特殊情况下,如果连续函数在(a,b)内仅有一个极值点.而函数在该点确有极大(小)值,则函数在该点的值就是函数在[a,b]上的最大(小值).这种说法也不正确,以上面所举函数为例,从图形上看到x=2是函数在(3/2,6)内唯一一个极值点,且函数在该点确有极大值,但函数在[3/2,6]上的最大值在端点x=6取到,而不是在x=2处取到.以上两个错误产生的原因是忽视了一个事实:若是[a,b]上的连续函数在(a,b)内的一个最大(小)值点,  相似文献   

16.
第一种途径是自创的,仅按极限的定义并结合使用两点间的距离公式和拉格朗日中值定理就可获得弧微分计算公式;第二种途径是经典的,需要用到定积分定义、变上限函数等等;第三种途径是高职高专教材编写者常用的,它需要先默认弦长与弧长之比的极限为1;为了按顺序编写教材,第一种途径最宜。  相似文献   

17.
《聊城师院学报》(自然科学版)1990年第1期上登了周相泉、吴寿岩的论文《关于任意有限个函数的微分中值定理》[1],该文将微分学中的柯西中值定理推广到任意有限个函数,经对比和研讨后,我们发现,零陵师专何志敏同学早在1985年就得到了这个推广[2]。下面,我们就来说明这两篇文章的主要定理是相同的,最后再说明这种推广的含义。  相似文献   

18.
关于Cauchy中值定理“中间点”的渐近性质   总被引:3,自引:2,他引:1  
文[1]给出了当区间长度趋于无穷时Lagragnge中值定理“中间点”的渐近性质,本文在一定条件下给出了当区间长度趋于无穷时Cauchy中值定理“中间点”的渐近性质,推广了[1]中的结果。  相似文献   

19.
由于Rolle(罗尔)定理是Lagrange中值定理当f(a)=f(b)时的特殊情况,利用Rolle(罗尔)通过倒退分析、几何直观、三角形面积、求解来证明Lagrange中值定理,使证明过程更简明易懂。  相似文献   

20.
一、极值点的充要条件 若实函数f(p)=f(x_1,…,x_n)在点p_0(x_1(0),…x_n(0))的邻域D内有定义,且在0≤ρ(P_0,P)相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号