首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文关于古典概型主要做了三点思考:1.三种古典概型问题的样本空间的选取技巧;2.运用古典概型的等可能性,构建样本空间的技巧;3.如何避免或减少古典概型计算中常见错误的出现,并且分别举例说明。  相似文献   

2.
概率论与数量统计是研究随机现象统计规律的一门数学分科 ,随机试验所代表的现象称为随机现象 ,其中有一类随机试验—即所谓的古典型试验 ,对于这样的随机试验 ,直观上可以清楚的看到 ,应该如何用数字来度量事件出现的可能性 ,对于这类随机试验中 ,随机事件概率的计算 ,是按照古典概率定义来计算的。古典概率定义 :对古典型试验 ,设试验的一切基本事件有n个 ,而事件A包含的基本事件有k个 ,则A的概率定义为P(A) =A包含的基本事件数一切基本事件数 =kn这个定义只适用于古典概型 ,它要求试验的一切可能结果为有限且等可能。但在很多实…  相似文献   

3.
概率论是研究随机现象的一门数学学科,它的应用非常广泛,其中的古典概型占相当重要的地位,是一切概率问题的基础.本文给出了古典概型求解过程中需要注意的问题和三种解法,介绍了古典概型中常用的两个分布的区分方法及求解过程,使大家更加深层次地理解古典概型的相关问题.  相似文献   

4.
定义1;形如的分块矩阵叫下三角形分块矩阵.其中B_(ij)(i,j=1,…,S)是m x n的矩阵.定义2:形如的分块矩阵叫上三角形分块矩阵.其中B_(ij)是m;xn的矩阵(i.j=1.2,….S)引理:设分块矩阵其中A是S阶方阵,I是t阶单位方阵,且S+t=n,则|P|=|A|.证明:设A=(A_(?))_(?),则  相似文献   

5.
从文(1)和(2)中,我们知道,对于给定的实数域上m×n阶矩阵A,若有适合Penrose方程:(1)AGA=A;(2)GAG=G;(3)(AG)~T=AG;(4)(GA)~T=GA的全部或一部分条件的n×m阶实矩阵G,都称之为矩阵A的广义逆矩阵。通常把适合Penrose条件{i、j…}(这里{i、j…}是{1),2),3),4)}的一个子集)的所有广义逆矩阵G的集合,记为A{1,j,…}。而且还知道,结果在A{1}中找到一个特殊广义逆A~-就可以写出A{i}的通式G=A~- V(I-AA~-) (I-A~-A)U,U、V任取,同样,如果在A  相似文献   

6.
应用不动点理论研究了如下的具有变时滞的细胞神经网络模型dxi(t)/dt=-ai(t)xi(t)+sum from j=1 to n[bij(t)fj(xj(t))+cij(t)fj(xj(xj(t-τj(t)))]+Ii(t) t≥0,i=1,2,…,n,其中xi(t)(i=1,2,…,n)是神经细胞的状态;n是细胞的数量;B(t)=(bij(t))n×n和C=(cij(t))n×n连续的矩阵函数,I(t)=(I1(t),I2(t),…,In(t))T是连续的概周期函数,f(x)=(f1(x1),f2(x2),…,fn(xn))T是细胞活动函数,A(t)=diag(a1(t),a2(t),…,an(t)),并且ai(t)〉0,(i=1,2,…,n),时滞0≤τi(t)≤τ(i=1,2,…,n)是有界函数,得出了其概周期解得存在性和全局指数稳定性的充分条件。  相似文献   

7.
应用不动点理论研究了如下的具有变时滞的细胞神经网络模型 其中xi(t)(i=1,2,…,n)是神经细胞的状态;n是细胞的数量;B(t)=(bij(t)max连续的矩阵函数,I(t)=(I1(t),I2(t)…,In(t))r是连续的概周期函数,f(x)=(f1(x1),f2(x2),…,fn(xn))r是细胞活动函数,A(t)=diag(a1(t),a2(t)…,an(t)),并且a1(t)〉0,(i=1,2,…,n),时滞0≤τ1(t)≤τ(i=1,2,…,n)是有界函数,得出了其概周期解得存在性和全局指数稳定性的充分条件。  相似文献   

8.
四川教育出版社出版的近代数学丛书《概率入门》(陈德勤编著),是一本很好的概率入门丛书。笔者遍阅了全文,认为其中一道例题其解法有误,现提出与大家商讨: 原书49页[例3]原题及其解法抄录如下: “从1、2、3…9共9个数中,可重复地取出3个来,求取出来的3个数字全不相同的概率。  相似文献   

9.
[原题]一个质量可不计的活塞将一定量的理想气体封闭在上端开口的直立圆筒形气缸内,活塞上堆放着铁砂,如图1所示.最初活塞搁置在气缸内壁的固定卡环上,气体柱的高度为H_0,压强等于大气压强P_0.现对气体缓慢加热,当气体温度升高了△T=60K时,活塞(及铁砂)开始离开卡环而上升.继续加热直到气柱高度为H=1.5H_0.此后,在维持温度不变的条件下逐渐取走铁砂,直到铁砂全部取走时,气柱高度变为H_2=1.8H_0,求此时气体的温度.(不计活塞与气缸间的摩擦)该题是1995年全国物理高考题中的一道计算题,分数为8分.在众多的考生中能够得到这8分的人不是很多.笔者参加了1995年该地区的高中中专评卷工作,发现大多数考生能够稍微动笔做一至两步,后面则是乱写一通,不得要领.其实解该类题目只要抓住问题的关键,解法是很多的.这道考题共有十六组方程可以求解.为叙述方便,我们以Z(P,V,T)表示选定研究的状态点,应选Z_0(P_0,H_0,T_0);Z_1(P_1,H_0,T_0+△T);Z_1(P_1,H_0+△T);Z_2(P_1,H_1,T_2);Z_2(P_0,H_2,T_2)四个参考点,根据理想气体状态方程P_1V_1/T_1=P_2V_2/T_2可开列C_4~2=6个方程;我们设:a=P_0H_0/T_0 b=P_1H_0/T_0+△T C=P_1H_1/T_2 d=P_0H_2/T_2=P_0H_0 b=P_1H_0?T_0+△T C=P_1H_1/T_2 d=P_0H_2/T_2=P_TH_0T/T_o b=P_1H_  相似文献   

10.
直线斜率公式tga=k=y_2-y_1/x_2-x_1.(x_1≠x_2)是解析几何的基础公式之一.直线的斜率在判断两条直线的位置关系以及求直线的倾斜角、夹角等方面,有广泛的应用.然而,在涉及直线与曲线的位置关系这类问题时,若能灵活地应用直线的斜率,就会化繁为简,化难为易.1.应用直线斜率求最大值、最小值曲线上某一点的最大值或最小值,如果采用的切线的斜率来解,往往会出现“柳暗花明又一村”的境况.例1如图1,在平面直角坐标系中,在Y轴的正半轴(坐标原点除外)上给定两点A、B在X轴的正半轴(坐标原点除外)上求点C,使∠ACB取得最大值.解法:分别设A、B、C三点坐标为A(0.a),B(0,b).C(x,0),∠ACB=θ,这里a>b>o,X>0,θ∈(0,π/2).∴tgθ=K_BC-K_AC/1+K_BC·K_AC=a-b/x+ab/x≤a-b/2/2~(1/ab)∴当x=ab/x时,x=(ab)~(1/ab)时tgθ最大.此时,C点坐标为((ab~(1/ab),0)θ_Max=arctg/a-b/2~(1/ab).2.应用直线斜率求轨迹方程求点的轨迹问题是初等解析几何的重要内容之一.求线段中点的轨迹方程是常见的一类.这类问题解法很多,但灵活地使用线段所在直线的斜率求解,往往会收到事半功倍的效果.例2 如图2抛物线y~2=2PX的准线交抛物线的对称轴于A点,过A引直线交抛物线于B、C两点,求BC中点的轨迹方程.为了说明应用直线斜率求轨迹方程的灵活  相似文献   

11.
1 nr -。。__.。__/1_。、。_ 定义:al,a。,…,an,为n个正数,称M。-【二*aZ ) 为al,a。,…,an的r次幂 i。1平均。 性质 1,huM。。J“1“2’“”“2,零次幂平均就是几何平均。 r 0’ rlnai、l__ 。。、t”“‘“”’tiffs;. Mbfl飞’a。e=互十…一二二一一一十o(r“) 二aZ 的 … aZ=n r(ha;·a。…。。) 。(r‘) n ]-- r r — —. a.=1 -Ina’··吧n o(r“) n-- ’ n i=1 ]_厂r。”。、 filM。tellll 1 一ill81··二81 O(t“)I ——~r 叉n“——””j ],r-’ =、Ilna’…an Otr“)I r 飞 *-“”厂 、’=nilsl…an lttlVI。fi_lie…  相似文献   

12.
定义图Sm*Sn为V(Sm*Sn)={w;u1,u2,…,um}U{Viji=1,2,…,m;j=1,2,…,n},E(Sm*Sn)={wui|i=1,2,…,m}U{uiVij|i=1,2,…,m;j=1,2,…,n}.本文给出了Sm*Sn的点可区别的边色数.  相似文献   

13.
对数列极限进行了研究,探讨了求n∑i=1ai极限的几种方法,而利用级数收敛和无穷小数列的性质两种方法较为灵活,部分nΠi=1ai数列的极限可通过取自然对数转化为n∑i=1ai来求解.  相似文献   

14.
一、证明组合等式 例1 证明Cno+Cn1+…+Cnn=2n。 证明 先构造一个概率模型:随机地掷硬币n次,考虑在n次掷币中出现正面k次的概率,用Ak表示在n次掷币中出现正面k次的事件,k的一切可能值是0、1、2、…、n,这是贝努力概型,在每一次试验中出现正面的概率都是1/2,从而得  相似文献   

15.
拉格朗日乘数法,是解决条件极值问题的著名方法,但该法的计算量很大,计算过程冗长、繁杂.本文将从数形结合的角度出发,对两类常见的条件极值问题,提供一种简单的解法.1 求函数f(x,y)=(x-x_0)~2+(y-y_0)~2+p在条件Ax+By+C=0下的最小值.对此类问题,我们可用下法求解:取xy平面上的一点P_0(X_0,Y_0),直线L:Ax+By+C=0及L上一动点P(x,y),如左图:设P_0到L的距离为d,由于“点到直线的距离不大于点到直线上任意一点的距离”,故显然有│p_0p|≥d.应用两点间距离公式及点到直线的距离公式,可得:[(x-x_0)~2+(y-y_0)~2]~(1/2)≥│Ax_0+By_0+C│/(A~2+B~2)(1/2)所以有:  相似文献   

16.
逆向思维又称反向思维,它是分析和解决物理问题的一种行之有效的、科学的创造性思维方式.利用这种逆向思维解题,是把人们通常思考问题的思路反过来加以思考,执果索因.利用逆向思维解题,常能化难为易,删繁就简,变死为活,使解题迅速而又准确.既有利于强化逆向思维训练,防止学生理解僵化,方法刻板,培养学生思维的灵活性,广阔性和深刻性,又有利于开拓学生思路,活化知识,提高解答物理习题的能力.1.用逆向思维法求解力学题例1:将某种材料的长方体锯成A,B,C三个物体,然后再对拼在一起,放在光滑的水平面上,如图1所示,且m_C=2m_A=2m_A=2m_B=2千克,用8牛顿的力F从正面推C,使得A,B,C组成的长方体保持矩形的整体沿力的方向平动,试求运动中B与C间的静摩擦力大小和方向.分析与解:本题若按常规解法,把B与C间的弹力和静摩擦力分开来考虑,结果在确定静摩擦力的方向问题上花费不少时间.但是,如果我们倒过来想一想,发现求出B与C间的弹力和静摩擦力的合力,即B,C间作用力是容易求的,然后再正交分解求摩擦力也就方便了.选A,B,C组成的整体为研究对象,由牛顿第二定律,有:F_1=(m_A+m_B+m_C)a,解得a=2米/秒~2,对B物体而言,只有C对B的作用力产生加速度,因此,得F_(CB)=m_Ba=4牛顿,沿F_1原有方向.由正交分解法得,运动中B,C间静摩  相似文献   

17.
在无线网络中,基于新型的功率控制算法Pi(k+1)=Pi(k)×Mmax(k)/γi(k)在分别满足条件:每个链路的信号干扰比(SIR)都等于γun,即i=γun和至少存在一个链路的功率等于功率的最小值,即■j:pi=pmin时,获得链路的最小一致信号干扰比.此外,在该过程中这种算法减少了信息在链路中的传播.  相似文献   

18.
设任意实数a_i,b_i(i=1,2,……,n),有(a_1b_1+a_2b_2+……a_nb_n)~2≤((a_1)~2+(a_2)~2+……+(a_n)~2)(b_1~2+b_2~2+……+b_(?)~2)即(sum from i=1(a_ib_i))~2≤sum from i=1(a_i)~2·sum from i=1(b_i~2),并且当且仅当a_i/b_i=k;即a_i与b_i(i=1,2,……,n)成比例时取等号.这个不等式叫做柯西不等式.其证明方法在此省略,主要说明其应用方法.柯西不等式是一个重要的数学不等式,在中学教材中未提及,但在教学过程中若能适时地引入,可以大大简化解题过程,拓宽视野,起到事半功倍的作用,本文特举几例说明如下:例1 求证ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2)在中学阶段一般采用比较法或分析法,当ac+bd≤0时不等式显见成立.当ac+bd>0时用分析法.欲证ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),只须证(ac+bd)~2≤(a~2+b~2)(c~2+d~2)即 2abcd≤a~2d~2+b~2c~2即(ad—bc)~2≥0显见最后一个不等式成立.所以ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2)。其实由柯西不等式有:  相似文献   

19.
看起来,似乎此解法也很简单、且答案正确。事实上,此解法却犯了一个概念性的错误。我们指出:吉米多维奇著《数学分析习题集》对不定积分∫((1-sin2x)~1/2)dx的解法答案是错误的。即F(x)=(cosx sinx)·sgn(cosx-sinx)并不是∫((1—sin2x)~1/2)dx的原函数:(参看《德州师专学报》自然科学版第二期,《求不定积分容易忽略的一个问题》。)其错误在于F(x)=(cosx sinx)·sgn(cosx-sinx)在点x=π/4 kπ(k∈J,J表示整数集合)不连续。若对F(x)进行适当“加工”就能得到真正的原函数:  相似文献   

20.
《数学通报》2 0 0 0年第 2期及《中学数学研究》1999年第 2期中分别给出了方程组∑ni=1xi=p∑ni=1x2 i=q(n≥ 2 )有解的充分必要条件 .本文通过类比、联想、猜测、归纳等思维方法 ,证明了 7个新的数学命题 ,从而使上述两篇论文中的例题不仅有较简单的解法 ,而且可以推广出新的数学命题 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号