首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
教育   6篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Thin plates of 21% Cr ferritic stainless steel welded by pulsed gas tungsten arc welding at different pulse frequencies were investigated for the microstructure characteristics and hardness behavior.The welds contained columnar grains in the outer part and fine equiaxed grains in the central region due to the pulsed process.  相似文献   
2.
The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results indicate that the widths of the center equiaxed grain zone(EGZ)and the columnar grain zone(CGZ)increase with the increase of heat input in both welding processes. The precipitates of Nb and Ti carbides and nitrides are formed in the weld metal(WM)and the heat affected zone(HAZ). The joints by laser welding show better tensile and corrosion resistance properties than those by P-TIG welding due to the heat concentration and lower heat input. The tensile strength and elongation increase with the decrease of heat input, and the fracture mode of the joints turns into ductile-brittle mixed fracture from ductile fracture when the welding method turns into P-TIG welding from laser welding. Moreover, the corrosion resistance of all joints declines slightly with the increase of heat input. Hence, laser welding is more suitable for welding Cr26Mo3.5 super stainless steel in engineering applications.  相似文献   
3.
This paper introduces the complexity and particularity of tube-sphere intersection weld(J-groove weld) and establishes the mathematical model of tube-sphere intersection trajectory.Based on the characteristics of J-groove welds,the computational process of welding gun orientation is first simplified.Then the kinematic algorithm of a welding robot is obtained according to screw theory and exponential product formula.Finally,Solidworks and SimMechanics are employed to simulate the kinematics of the welding robot,which proves the feasibility of the kinematic algorithm.  相似文献   
4.
Activating Flux Design for Laser Welding of Ferritic Stainless Steel   总被引:1,自引:1,他引:0  
The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.  相似文献   
5.
The links of Motoman HP6 arc welding robot are considered as an open kinematic chain which consists of a series of rotational joints through concatenation. One end of the open chain is fixed to the base or the earth, and the other end which is free fastens the end executor to complete various duties. Each link of this arc welding robot has four kinds of Denavit-Hartenberg parameters: common normal length between two adjacent links, angle of two adjacent joints, distance between the crossing of common normal length and two joints axes, and angle of two adjacent links. The displacement relation between each link of the Motoman HP6 arc welding robot is introduced, and the kinematic positive-going solution and the kinematic passive-going solution are calculated.  相似文献   
6.
A combined numerical model of thermal field and the primary dendrite arm spacing (PDAS) was proposed to correlate the process parameters and PDAS in laser welding of Cu and A1. The solidification parameters simulated by the finite volume method with commercial software ANASYS FLUENT were applied in the PDAS model to predict the dendrite arm spacing of fusion zone. Dendrite was also examined by the metallographic method to validate the model. Results indicate that the calculated PDAS agrees with metallographic measurements reasonably, especially the Hunt model. PDAS increases apparently with increasing laser power while decreases slightly with increasing welding speed. Increasing laser power increases the secondary dendrite and increasing welding speed increases the microporosity in dendrite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号