首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在分式加减运算中,若能根据分式的结构特点,使用通分的技巧,不仅可以保证运算的正确性,而且可以提高解题的速度,收到事半功倍之效。一、整体通分例1计算x3x-1-x2-x-1。解:原式=x3x-1-(x2+x+1)=x3x-1-(x-1)(x2+x+1)x-1=x3x-1-x3-1x-1=1x-1。二、拆项通分例2计算a-bab+b-cbc+c-aca。解:原式=(1b-1a)+(1c-1b)+(1a-1c)=1b-1a+1c-1b+1a-1c=0。三、一次通分例3计算1x2+3x+2+1x2+5x+6+1x2+4x+4。解:原式=1(x+1)(x+2)+1(x+2)(x+3)+1(x+1)(x+3)=x+3+x+1+x+2(x+1)(x+2)(x+3)=3(x+2)(x+1)(x+2)(x+3)=3(x+1)(x+3)。四、逐步通分例4计算1x-1-1x+1-2x2+1。…  相似文献   

2.
分式加减运算的关键是通分,对于有些特殊的分式加减题,若按照常规方法进行通分,往往运算比较繁杂,不便于速算.若能注意观察分式的结构特征,灵活运用解题技巧,则能化繁为简,常可收到事半功倍的效果.下面向同学们介绍几种通分的常用技巧,供学习时参考.一、先整体考虑,再通分例1计算a2a-1-a-1.解:原式=a2a-1-(a+1)=a2a-1-(a+1)(a-1)a-1=a2a-1-a2-1a-1=1a-1二、先结合,再通分例2计算1x-1-1x+1-2x2+1-4x4+1解:原式=2x2-1-2x2+1-4x4+1=4x4-1-4x4+1=8x8-1三、先分组,再通分例3计算1x-2+2x+1-2x-1-1x+2解:原式=(1x-2-1x+2)+(2x+1-2x-1)=4x2-4-4x2-1=…  相似文献   

3.
正分式求值是分式运算中的一类常见问题,对计算能力的要求较高。在求解此类问题时,既要注意基本法则的应用,也要掌握相关的解题技巧。下面举例说明。一、整体通分3例1计算x2+x+1-x3/x-1分析:把(x2+x+1)看成一个整体,对其进行通分,并且分子还可利用乘法公式简化运算。解:原式=(x-1)(x2+x+1)-x3=x3-1-x3=-x-1x-1x-11。x-1二、部分通分例2计算:1-1-2-4x-1x+1x2+1x4。+1分析:按照常规解法是把四个分母一起通分,这样求解过于繁琐。若选择前面两个分式通分,然后再逐个通分,这样化繁琐为简单。解%原式=2-2-4(x+1)(x-1)x2+1x4=+1  相似文献   

4.
一、配方法例1分解因式:2x3-x2z-4x2y+2xyz+2xy2-y2z解:原式=(2x3-4x2y+2xy2)-(x2z-2xyz+y2z)=2x(x2-2xy+y2)-z(x2-2xy+y2)=(x2-2xy+y2)(2x-z)=(x-y)2(2x-z)·二、拆项法例2分解因式:x3-3x+2·解:原式=x3-3x-1+3=(x3-1)-(3x-3)=(x-1)(x2+x+1)-3(x-1)=(x-1)(x2+x-2)·注:本题是通过拆常数项分解的,还可通过拆一次项或拆三次项分解,读者不妨一试·三、添项法例3分解因式:x5+x+1·解:原式=(x5-x2)+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)·四、主元法例4分解因式:2a2-b2-ab+bc+2ac·解:以a为主元,将原式整理成关…  相似文献   

5.
一、要注意分母的值不能为零例1(1997年山西省中考题)当x=时,分式(x-|3x)|(-x1+1)的值为零·解:由|x|-1=0,得x=1或x=-1;当x=-1时,分母(x-3)(x+1)=0,所以x=1时,上述分式的值为零·二、要注意不要盲目通分例2(1997年西宁市中考题)当a=3,b=2时,求代数式a+ba2+2ab+b2-ba22--abb2的值解:待求式=a+b(a+b)2+(a+b(ba)(-ab)-b)=a1+b+a+bb=a1++bb=33+2=3(2-3)·三、要注意运用换元技巧例3(1997年云南省中考题)1x2+3x+2+1x2+5x+6+x2+41x+3·解:因为原式=(x+1)1(x+2)+1(x+2)(x+3)+(x+3)1(x+1),所以设x+1=a,x+2=b,x+3=c,则原式=a1b+b1c+c1a=a+abbc+c=(x+1…  相似文献   

6.
一、巧用分式的基本性质例 1.计算 x- 1x ÷ (x- 1x)。解 :原式 =x- 1xx- 1x(化为繁分式 )=(x- 1x )· x(x- 1x)· x(分式的基本性质 )=x- 1x2 - 1=1x+ 1。二、巧用逐步通分法例 2 .化简 11- x+ 11+ x+ 21+ x2 + 41+ x4 。分析 :若一次性完成通分 ,运算量很大 ,注意到 (1- x) (1+ x)=1- x2 ,而 (1- x2 ) (1+ x2 ) =1- x4 ,可以用逐步通分法化简。解 :原式 =21- x2 + 21+ x2 + 41+ x4=41- x4 + 41+ x4=81- x8。三、巧用运算律例 3.计算 11- x+ 8x71+ x8- 4 x31+ x4 - 2 x1+ x2 - 11+ x。分析 :可以先用加法交换律整理顺序如下 :11- x- 11+ x-…  相似文献   

7.
例1、计算(x-1)/(x~2-3x+2)+(x+1)/(x-2)-(x~2-x-6)/(x~2-4) 解:原式=(x-1)/[(x-1)(x-2)]+(x+1)/(x-2)[(x-3)(x+2)]/[(x+2)(x-2)]=1/(x-2)+(x+1)/(x-2)-(x-3)/(x-2)=[1+(x+1)-(x-3)]/(x-2)=5/(x-2) 说明:本题看起来是异分母的分式相加减,但把两个较复杂的公式的分子、分母分解因式后,约去公因式,就变简单了,且是同分母的分式相加减。若不这样做,则会异常繁杂。  相似文献   

8.
初中数学学习中,经常遇到一些次数较高的数或式的运算有关的问题·考虑降次的思想方法,可使解题简易·下面举例介绍几种常用的降次途径·一、代入降次例1(2005年“华罗庚杯”初二数学竞赛试题)已知x2+x=1,那么x4+2x3-x2-2x+2005=·解:由x2+x=1,得x2=1-x·所以x3=x(1-x)=x-(1-x)=2x-1,x4=x(2x-1)=2(1-x)-x=2-3x·原式=(2-3x)+2(2x-1)-(1-x)-2x+2005=2004·例2(2003年辽宁省初中数学竞赛试题)当x=1+21997时,求(4x3-2000x-1997)2003的值·解:显然,2x-1=1997,所以(2x-1)2=1997,4x2=4x+1996,这时4x3=4x2+1996x=2000x+1996,原式=[(2000x+1996)-200…  相似文献   

9.
利用因式分解进行分式的化简和计算,是中考中的常见题型,它不仅考查了同学们对因式分解的掌握情况,而且考查了计算能力.例1(广州市)计算:x2+2x-3/x2-9·x2-5x+6/3x2-x-2.解:原式=(x+3)(x-1)/(x+3)(x-3)·(x-2)(x-3)/(3x+2)(x-1)=x-2/3x+2.点评:本题将各多项式进行因式分解后,可以发现分子分母有公因式,约去公因式,即可达到化简的目的.  相似文献   

10.
在进行分式运算时,除了应熟练掌握分式运算的基本方法外,还要善于根据分式的结构特点,采用特殊的方法.现举例说明. 一、分组合并法不要急于将所有分式进行通分,要有选择地先把易通分的分式结合在一起进行计算,然后再将各部分得到的结果进行计算.例1计算1a-b+1a+b-a-ba2+ab+b2-a+ba2-ab+b2.解:原式=1a-b-a-ba2+ab+b2 +1a+b-a+ba2-ab+b2 =3aba3-b3-3aba3+b3=3ab(a3+b3-a3+b3)(a3-b3)(a3+b3)=6ab4a6-b6.练习1:计算1x-2-2x+1-2x-1+1x+2.14x-2x3x4-5x2+4 二、逐步合并法同样不要急于将所有分式进行通分,先将某两个分式结合在一起运算,…  相似文献   

11.
分式运算经常涉及到通分 ,若能根据分式的结构特征 ,采取相应的通分方法和技巧 ,则不仅可驭繁为简、化难为易 ,而且可减少出错率 ,达到事半功倍之效。本文通过课本习题介绍分式通分的七种技巧。一、分解因式 ,约后通分例 1 .计算 :x2 2 xy y2x2 y xy2 - x2 - 2 xy y2x2 y- xy2 。解 :原式 =( x y) 2xy( x y) - ( x- y) 2xy( x- y)=x yxy - x- yxy=2 yxy=2x。二、通盘考虑 ,整体通分把题目中的多项式视为一个整体进行通分 ,比逐项通分计算量小、速度快。例 2 .计算 :x3x- 1- x2 - x- 1。解 :原式 =x3x- 1- ( x2 x 1)=x3 - ( x- 1) ( x2 x …  相似文献   

12.
一、选择题(四个选项中有且只有一项是正确的。每小题3分,10小题,共30分)1.如图,用不等式表示数轴上所示的解集,正确的是()(A)x<-1或x≥3(B)x≤-1或x>3(C)-1≤x<3(D)-1相似文献   

13.
1·B.2·D.3·D.4·B.5·B.6·A.7·C.8·B.9·1.10·52.11·3y或6x.12·bb+-aa.13·M=N.14·100,1n.15·2-1x.16·2(x+2),值为22+2.17·由1a+1b=a1+b,知(a+b)2=ab,而ab+ab=a2a+bb2=(a+b)ab2-2ab,所以原式=ab-ab2ab=-1.18·x=0.19·设去年水价为x元/m3,根据题意,得(1+3256%)x-1x8=6,解得x=1.8.20·(1)x1=c,x2=cm.(2)x1=a,x2=aa+-11.原方程可变为x+x2-1=a+a-21.故x-1=a-1,x1=a;或x-1=a-a1,所以x2=aa+-11上期《“分式”测试卷》参考答案…  相似文献   

14.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

15.
微笑的人是快乐的,微笑的面孔是美丽的。在进行分式运算时,如果能根据题目的结构特点,将一个分式分拆成几个分式或一些整式与分式的代数和,往往能使问题化难为易.一、逆用同分母分式的加法法则进行分拆例1当x变化时,分式3x2+6x+512x2+x+1的最小值是.解:原式=6x2+12x+10x2+2x+2=6x2+12x+12-2x2+2x+2=6-2x2+2x+2=6-2(x+1)2+1.∴当x=-1时,分式最小值是4.二、逆用通分法则进行分拆例2化简2a-b-c(a-b)(a-c)+2b-a-c(b-c)(b-a)+2c-a-b(c-a)(c-b).解:原式=(a-b)+(a-c)(a-b)(a-c)+(b-c)+(b-a)(b-c)(b-a)+(c-a)+(c-b)(c-a)(c-b)=1a-c+1a-b+1b-a+1b-c+1…  相似文献   

16.
同学们在学习分式时常常出现这样或那样的错误,现分类剖析如下.一、违背运算顺序致错.例1.计算1-3a2b÷32ba·32ab错解:原式=1-3a2b=2b2-b3a剖析:错解违背了运算顺序,因乘除是同级运算,应从左向右依次运算.正解:原式=1-3a2b·23ba·23ab=1-32ab=3a-2b3a.二、轻易约分致错例2.当x取何值时,分式x2 3x 2x2-x-2有意义错解:∵x2 3x 2x2-x-2=(x 1)(x 2)(x 1)(x-2)=x 2x-2∴当x-2≠0,即x≠2时原分式有意义剖析:在解答分式有无意义的问题时,不能轻易约分,因为把分子和分母的公因式约去,导致分母的取值范围扩大而发生错误.胡怀志正解:由分母x2-x-2≠0…  相似文献   

17.
换元法是中学数学的重要解题方法,应用极为广泛,对于某些与二次根式有关的问题,利用换元法,常常具有以简取繁、捷足先登之功效。一、用于化简例1 设0相似文献   

18.
定理关于x的方程x+nx=a+na(an≠0)的解为x=a或x=na.证明:将原方程去分母,得ax2+an=a2x+nx,即ax2-(a2+n)x+an=0,所以(x-a)(ax-n)=0,解得x=a或x=na.经检验,x=a和x=na都是原方程的解.由这个定理,可以得到下面的推论.推论关于x的方程x+1x=a+a1的解为x=a或x=1a.掌握上述定理和推论,可以帮助我们巧解一些分式方程和分式求值问题.一、解分式方程例1解关于x的方程x+1x-1=a+a-11.解:原方程可化为(x-1)+1x-1=(a-1)+1a-1.由上述推论,得x-1=a-1或x-1=1a-1.由x-1=a-1,得x=a;由x-1=1a-1,得x=aa-1.经检验,x1=a,x2=a-a1均是原方程的解.例2解方程3xx2-1+x32-x…  相似文献   

19.
1·一般化策略在求值中的应用字母相对于数字来说是一般形式,对于题目中含繁杂数字,可以利用一般化策略,用字母代替数字,寻求一般化规律,从而达到化繁为简的目的·【例1】若函数f(x)=12x+2,求f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值·解析:本题逐项求值是繁难的,由于自变量的值两两之和相等,即(-5)+6=(-4)+5=(-3)+4=(-2)+3=(-1)+2=0+1=1·这样的信息启示我们考察一般化情形即f(x)与f(1-x)间的关系·∵f(1-x)=12x-1+2=2+22x·2x,f(x)=22+2·2x,∴f(1-x)+f(x)=2x+22(2x+2)=22,∴f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=6×22=32.2·一般化策略在不等…  相似文献   

20.
在分式的加减运算中,若能根据分式结构上的不同特点,采用灵活、巧妙的通分方法,则可达到化繁为简,化难为易的效果.一、整体通分例1计算(a-2/a~2)-a-2分析因为"a~2-4=(a 2)(a-2),所以可把题中的整式部分视为一个整体,进行一次通分.解:原式=(a-2/a~2)-(a 2)=(a-2/(a~2))-(a-2/(a~2)-4)=a-2/4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号