首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, containment control problems of networked fractional-order multi-agent systems with time-varying delays are studied. The normalized directed graphs are employed to characterize the communication topologies. Two sampled-data based containment control protocols are proposed, which can overcome the time-varying delays and switching topologies. It is interestingly found that the decays of the closed-loop systems correspond to the Mittag-Leffler function and its approximation, which are the extensions of the exponential function and its approximation, respectively. Based on the algebraic graph theory, the properties of row-stochastic matrix, and the relation between the topologies and the matrices, some conditions for containment control are established. For the fixed topology, a necessary and sufficient condition is obtained; and for the switching topology, a sufficient condition is provided. Finally, the theoretical results are illustrated by several numerical simulations.  相似文献   

2.
This paper concentrates on the distributed consensus control of heterogeneous fractional-order multi-agent systems (FO-MAS) with interval uncertainties. Unlike previous methods, no restrictive assumptions are considered on the fractional-orders of the agents and they can have non-identical fractional-orders. Therefore, the closed-loop system becomes an incommensurate fractional-order system and its stability analysis is not easy. It makes consensus control more challenging. To design a systematic controller, new Lyapunov-based Linear Matrix Inequality (LMI) conditions are proposed which are suitable to determine the state feedback controller gains. Then, the consensus of heterogeneous fractional-order agents with an observer-based controller is provided. Finally, some numerical examples are provided to verify the effectiveness of our results.  相似文献   

3.
In some real systems, the intermittent communications and the inaccurate velocity measurements are usually inevitable. To overcome these two communication limitations, this article aims at investigating the containment control problem for a class of second-order multi-agent systems with inherent nonlinear dynamics and aperiodically intermittent position measurements. Under the case that the velocity information is unavailable, a distributed filter is introduced for each second-order follower. Based on the distributed filter, a novel intermittent containment control protocol without velocity measurements is designed. Some sufficient conditions are derived under the common assumption that only relative position measurements between the neighbouring agents are utilized intermittently, and these conditions ensure that the second-order nonlinear multi-agent systems can achieve containment control. Furthermore, some simpler containment conditions are obtained for multi-agent systems with double-integrator dynamics under aperiodically intermittent communications. Finally, numerical simulations are provided to verify the effectiveness of the theoretical results.  相似文献   

4.
This paper considers distributed consensus problem of multi-agent systems consisting of general linear dynamics with a time-invariant communication topology. A distributed full-order observer type consensus protocol based on relative output measurements of neighbor agents is proposed. It is found that the consensus problem of linear multi-agent systems with a directed communication topology having a spanning tree can be solved if and only if all subsystems are asymptotically stable. Some necessary and sufficient conditions are obtained for ensuring consensus in multi-agent systems. The design technique is based on algebraic graph theory, Riccati inequality and linear control theory. Finally, simulation example is given to illustrate the effectiveness of the theoretical results.  相似文献   

5.
This paper considers the problem of the leader-following consensus of generally nonlinear discrete-time multi-agent systems with limited communication channel capacity over directed fixed communication networks. The leader agent and all follower agents are with multi-dimensional nonlinear dynamics. We propose a novel kind of consensus algorithm for each follower agent based on dynamic encoding and decoding algorithms and conduct a rigorous analysis for consensus convergence. It is proved that under the consensus algorithm designed, the leader-following consensus is achievable and the quantizers equipped for the multi-agent systems can never be saturated. Furthermore, we give the explicit forms of the data transmission rate for the connected communication channel. By properly designing the system parameters according to restriction conditions, we can ensure the consensus and communication efficiency with merely one bit information exchanging between each pair of adjacent agents per step. Finally, simulation example is presented to verify the validity of results obtained.  相似文献   

6.
In this paper, we apply iterative learning control to both linear and nonlinear fractional-order multi-agent systems to solve consensus tacking problem. Both fixed and iteration-varying communicating graphs are addressed in this paper. For linear systems, a PDα-type update law with initial state learning mechanism is introduced by virtue of the memory property of fractional-order derivative. For nonlinear systems, a Dα-type update law with forgetting factor and initial state learning is designed. Sufficient conditions for both linear and nonlinear systems are established to guarantee all agents achieving the asymptotic output consensus. Simulation examples are provided to verify the proposed schemes.  相似文献   

7.
This paper investigates the consensus problem of discrete-time networked multi-agent systems (DNMASs) with a directed topology and communication delay, where exact state and output of each agent are not measured, and yet output differences between agent and its neighboring ones (relative outputs for short) are available. Based on the networked predictive control scheme and relative output data, a novel protocol is proposed to overcome the effect of delay on the consensus actively. Moreover, for the DNMASs with a fixed topology and constant communication delay, delay-independent necessary and/or sufficient conditions of achieving consensus are obtained, which reveal that the essence of dominating the consensus is agents' dynamics and communication topology. Simulation results further demonstrate the effectiveness of theoretical results.  相似文献   

8.
Distributed coordination of multi-agent systems (MASs) has been investigated for many years, and fractional-order calculus has been proved that it can model the dynamics more accurately in certain circumstances. Hence, in this paper, combining the above two aspects, the distributed coordination of fractional-order MASs (FOMASs) is researched, which is a promising topic. Besides, in this paper, the uncertainty, inherent nonlinearity and external disturbances are taken into consideration, aiming at achieving the robust consensus tracking. In particular, the uncertain parameters will be identified from an optimization perspective using artificial bee colony algorithm (ABC). Firstly, to ameliorate the performance of the standard ABC, a hybrid ABC (hABC) incorporating two groups of searching mechanisms is designed, it facilitates the identification of unknown parameters. After obtaining the identified parameters, an efficient distributed nonlinear controller is raised to fulfill the robust consensus tracking. Finally, experiments prove that the designed parameters identification approach can successfully estimate the uncertain parameters with high accuracy, besides the designed control algorithm can robustly control the FOMASs.  相似文献   

9.
This paper addresses the problem of cluster lag consensus for first-order multi-agent systems which can be formulated as moving agents in a capacity-limited network. A distributed control protocol is developed based on local information, and the robustness of the protocol is analyzed by using tools of Frobenius norm, Lyapunov functional and matrix theory. It is shown that when the root agents of the clusters are influenced by the active leader and the intra-coupling among agents is stronger enough, the multi-agent system will reach cluster lag consensus. Moreover, cluster lag consensus for multi-agent systems with a time-varying communication topology and heterogeneous multi-agent systems with a directed topology are studied. Finally, the effectiveness of the proposed protocol is demonstrated by some numerical simulations.  相似文献   

10.
11.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

12.
In this paper, both leaderless and leader-follower consensus problems for a class of disturbed second-order multi-agent systems are studied. Based on integral sliding-mode control, sliding-mode consensus protocols are proposed for leaderless and leader-follower multi-agent systems with disturbances, respectively. Firstly, for leaderless second-order multi-agent systems, a sliding-mode consensus protocol is proposed to make the agents achieve asymptotic consensus. Secondly, for leader-follower second-order multi-agent systems, a finite-time sliding-mode consensus protocol is designed to make the agents achieve consensus in finite time. Both kinds of consensus protocols inherit the anti-disturbance performance and robustness of sliding-mode control and require less communication information. Finally, two numerical simulations are given for leaderless and leader-follower second-order multi-agent systems to validate the efficiency of the proposed consensus protocols.  相似文献   

13.
This paper investigates secure bipartite consensus tracking of linear multi-agent systems under denial-of-service(DoS) attacks by using event-triggered control mechanism with data sampling. Both bipartite leader-following and containment tracking consensus are considered in this paper. The event-triggered control protocol using sampled-data information is designed to save limited resources. The communication channels are interrupted by intermittent DoS attacks. Sufficient conditions on the sampling periods, attack frequency and attack duration are obtained to ensure secure bipartite tracking consensus of the multi-agent systems. Finally, simulation example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

14.
In this paper, a robust adaptive control scheme is proposed for the leader following control of a class of fractional-order multi-agent systems (FMAS). The asymptotic stability is shown by a linear matrix inequality (LMI) approach. The nonlinear dynamics of the agents are assumed to be unknown. Moreover, the communication topology among the agents is assumed to be unknown and time-varying. A deep general type-2 fuzzy system (DGT2FS) using restricted Boltzmann machine (RMB) and contrastive divergence (CD) learning algorithm is proposed to estimate uncertainties. The simulation studies presented indicate that the proposed control method results in good performance under time-varying topology, unknown dynamics and external disturbances. The effectiveness of the proposed DGT2FS is verified also on modeling problems with high dimensional real-world data sets.  相似文献   

15.
In this paper, the global Mittag-Leffler consensus tracking issue is considered for fractional singularly perturbed multi-agent systems (FSPMASs) based on event-triggered control strategy, where the inherent dynamic is modeled to be a discontinuous function with nondecreasing property. Firstly, a differential inequality with respect to fractional-order derivative of convex function is developed. As the special cases, the inequalities about fractional-order derivative of three known functions are also addressed. Secondly, a distributed event-triggered control scheme is designed to guarantee that the considered FSPMASs can achieve the global Mittag-Leffler consensus. Moreover, the Mittag-Leffer convergence speed of tracking the leader for followers can be adjusted to any desired values in advance. In addition, under fractional Filippov differential inclusion framework, by applying Lur’e Postnikov-type Lyapunov functional with variable upper limit integral item and Clarke’s non-smooth analysis technique, the global Mittag-Leffler consensus conditions are addressed in terms of matrix inequalities (MIs). Finally, two numerical simulations are provided to illustrate the validity of the proposed design method and theoretical results.  相似文献   

16.
In this paper, the consensus problem of multi-agent systems with general linear dynamics is studied. Motivated by the MIMO communication technique, a general framework is considered in which different state variables are exchanged in different independent interaction topologies. This novel framework could improve the control system design flexibility and potentially improve the system performance. Fully distributed consensus control laws are proposed and analyzed for the settings of fixed and switching multiple topologies. The control law can be applied using only local information. And the control gain can be designed depending on the dynamics of the individual agent. By transforming the overall multi-agent systems into cascade systems, necessary and sufficient conditions are provided to guarantee the consensus of the overall systems under fixed and switching state variable dependent topologies, respectively. Two simulation examples are provided to illustrate the effectiveness of the proposed theoretical results.  相似文献   

17.
This paper investigates the consensus of fractional-order multiagent systems via sampled-data event-triggered control. Firstly, an event-triggered algorithm is defined using sampled states. Thus, Zeno behaviors can be naturally avoided. Then, a distributed control protocol is proposed to ensure the consensus of fractional-order multiagent systems, where each agent updates its current state based on its neighbors’ states at event-triggered instants. Furthermore, the pinning control technology is taken into account to ensure all agents in multiagent systems reach the specified reference state. With the aid of linear matrix inequalities (LMI), some sufficient conditions are obtained to guarantee the consensus of fractional-order multiagent system. Finally, numerical simulations are presented to demonstrate the theoretical analysis.  相似文献   

18.
This paper investigates the prescribed-time containment control problem for multi-agent systems with high-order nonlinear dynamics under a directed communication topology. Firstly, in view of the fact that only some follower agents can directly access the state information of multiple leader agents, a prescribed-time distributed observer is put forward to estimate the convex hull spanned by these leaders. Then, with the help of the distributed observer, a novel containment control method is developed for each follower based on a time-varying scaling function, so that all followers can converge to the convex hull spanned by the states of multiple leaders within a prescribed time. The comparison with the finite-time and fixed-time control methods differs in that the convergence time of the method proposed in this paper is independent of the initial conditions and control parameters and can be arbitrarily preassigned according to actual needs. Finally, an example is given to demonstrate the usefulness of the prescribed-time containment control method.  相似文献   

19.
This paper investigates the consensus tracking problem of leader-follower multi-agent systems. Different from most existing works, dynamics of all the agents are assumed completely unknown, whereas some input-output data about the agents are available. It is well known from the Willems et al. Fundamental Lemma that when inputs of a linear time-invariant (LTI) system are persistently exciting, all possible trajectories of the system can be represented in terms of a finite set of measured input-output data. Building on this idea, the present paper proposes a purely data-driven distributed consensus control policy which allows all the follower agents to track the leader agent’s trajectory. It is shown that for a linear discrete-time multi-agent system, the corresponding controller can be designed to ensure the global synchronization with local data. Even if the data are corrupted by noises, the proposed approach is still applicable under certain conditions. Numerical examples corroborate the practical merits of the theoretical results.  相似文献   

20.
Most of the available results of iterative learning control (ILC) are that solve the consensus problem of lumped parameter models multi-agent systems. This paper considers the consensus control problem of distributed parameter models multi-agent systems with time-delay. By using the knowledge between neighboring agents, considering time-delay problem in the multi-agent systems, a distributed P-type iterative learning control protocol is proposed. The consensus error between any two agents in the sense of L2 norm can converge to zero after enough iterations based on proposed ILC law. And then we extend these conclusions to Lipschitz nonlinear case. Finally, the simulation result shows the effectiveness of the control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号