首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The successful encapsulation of human hepatocellular carcinoma (HepG2) cells would greatly assist a broad range of applications in tissue engineering. Due to the harsh conditions during standard chitosan fiber fabrication processes, encapsulation of HepG2 cells in chitosan fibers has been challenging. Here, we describe the successful wet-spinning of chitosan-alginate fibers using a coaxial flow microfluidic chip. We determined the optimal mixing conditions for generating chitosan-alginate fibers, including a 1:5 ratio of 2% (w∕w) water-soluble chitosan (WSC) solution to 2% (w∕w) alginate solution. Ratio including higher than 2% (w∕w) WSC solution increased aggregation throughout the mixture. By suspending cells in the WSC-alginate solution, we successfully fabricated HepG2 cell-laden fibers. The encapsulated HepG2 cells in the chitosan-alginate fibers were more viable than cells encapsulated in pure alginate fibers, suggesting that cross-linked chitosan provides a better environment for HepG2 cells than alginate alone. In addition, we found that the adhesion of HepG2 cells on the chitosan-alginate fiber is much better than that on the alginate fibers.  相似文献   

2.
The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes.  相似文献   

3.
We present facile strategies for the fabrication of two types of microfluidic devices made of hydrogels using the natural biopolymers, alginate, and gelatin as substrates. The processes presented include the molding-based preparation of hydrogel plates and their chemical bonding. To prepare calcium-alginate hydrogel microdevices, we suppressed the volume shrinkage of the alginate solution during gelation using propylene glycol alginate in the precursor solution along with sodium alginate. In addition, a chemical bonding method was developed using a polyelectrolyte membrane of poly-L-lysine as the electrostatic glue. To prepare gelatin-based microdevices, we used microbial transglutaminase to bond hydrogel plates chemically and to cross-link and stabilize the hydrogel matrix. As an application, mammalian cells (fibroblasts and vascular endothelial cells) were cultivated on the microchannel surface to form three-dimensional capillary-embedding tissue models for biological research and tissue engineering.  相似文献   

4.
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.  相似文献   

5.
Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.  相似文献   

6.
Droplet microfluidic technology has the potential to significantly reduce reagent use, and therefore, lower costs of assays employed in drug discovery campaigns. In addition to the reduction in costs, this technology can also reduce evaporation and contamination which are often problems seen in miniaturized microtitre plate formats. Despite these advantages, we currently advise caution in the use of these microfluidic approaches as there remains a lack of understanding of the artefacts of the systems such as reagent partitioning from droplet to carrier oil and interaction of the biological reagents with the water-oil interface. Both types of artefact can lead to inaccurate and misleading data. In this paper, we present a study of the partitioning of a number of drug-like molecules in a range of oils and evidence of protein binding at the water-oil interface which results in reduced activity of a cytochrome P450 enzyme. Data presented show that the drug-like molecules partitioned the least into fluorocarbon oils and the interaction of the 1A2 cytochrome at the water-oil interface resulted in a lower or complete absence of enzyme activity. This loss of activity of cytochrome 1A2 could be restored by the use of secondary blocking proteins although changes in the pharmacology of known 1A2 inhibitors were observed. The artefacts described here due to reagents partitioning into the carrier oil or protein binding at the water-oil interface significantly impact the potential use of these microfluidic systems as a means to carry out miniaturized biological assays, and further work is needed to understand the impact and reduction of these phenomena.  相似文献   

7.
This paper presents a microfluidic device enabling culture of vascular smooth muscle cells (VSMCs) where extracellular matrix coating, VSMC seeding, culture, and immunostaining are demonstrated in a tubing-free manner. By optimizing droplet volume differences between inlets and outlets of micro channels, VSMCs were evenly seeded into microfluidic devices. Furthermore, the effects of extracellular matrix (e.g., collagen, poly-l-Lysine (PLL), and fibronectin) on VSMC proliferation and phenotype expression were explored. As a platform technology, this microfluidic device may function as a new VSMC culture model enabling VSMC studies.  相似文献   

8.
In this paper, we have presented a non-lithographic embedded template method for rapid and cost-effective fabrication of a selectively permeable calcium-alginate (Ca-alginate) based microfluidic device with long serpentine delay channel. To demonstrate the versatility of the presented method, we have demonstrated two different strategies to fabricate serpentine long delay channels without using any sophisticated microfabrication techniques, in formal lab atmosphere. The procedure presented here, also, enables the preparation of a multilayered microfluidic device with channels of varying dimensions, in a single device without using any sophisticated micromachining instrumentation. In addition, we have also qualitatively studied the diffusion of small and large molecules from a Ca-alginate based microfluidic device and proposed a method to effectively control the out-flow of macro biomolecules from the crosslinked Ca-alginate matrix to create a selectively permeable matrix required for various biological and biomimetic applications, as mentioned in the Introduction section of this work.  相似文献   

9.
Asthana A  Ho Lee K  Kim KO  Kim DM  Kim DP 《Biomicrofluidics》2012,6(1):12821-128219
In this paper, we have presented a non-lithographic embedded template method for rapid and cost-effective fabrication of a selectively permeable calcium-alginate (Ca-alginate) based microfluidic device with long serpentine delay channel. To demonstrate the versatility of the presented method, we have demonstrated two different strategies to fabricate serpentine long delay channels without using any sophisticated microfabrication techniques, in formal lab atmosphere. The procedure presented here, also, enables the preparation of a multilayered microfluidic device with channels of varying dimensions, in a single device without using any sophisticated micromachining instrumentation. In addition, we have also qualitatively studied the diffusion of small and large molecules from a Ca-alginate based microfluidic device and proposed a method to effectively control the out-flow of macro biomolecules from the crosslinked Ca-alginate matrix to create a selectively permeable matrix required for various biological and biomimetic applications, as mentioned in the Introduction section of this work.  相似文献   

10.
This paper presents a microfluidic device (poly-dimethylsiloxane micro channels bonded with glass slides) enabling culture of MLO-Y4 osteocyte like cells. In this study, on-chip collagen coating, cell seeding and culture, as well as staining were demonstrated in a tubing-free manner where gravity was used as the driving force for liquid transportation. MLO-Y4 cells were cultured in microfluidic channels with and without collagen coating where cellular images in a time sequence were taken and analyzed, confirming the positive effect of collagen coating on phenotype maintaining of MLO-Y4 cells. The proliferating cell nuclear antigen based proliferation assay was used to study cellular proliferation, revealing a higher proliferation rate of MLO-Y4 cells seeded in microfluidic channels without collagen coating compared to the substrates coated with collagen. Furthermore, the effects of channel dimensions (variations in width and height) on the viability of MLO-Y4 cells were explored based on the Calcein-AM and propidium iodide based live/dead assay and the Hoechst 33258 based apoptosis assay, locating the correlation between the decrease in channel width or height and the decrease in cell viability. As a platform technology, this microfluidic device may function as a new cell culture model enabling studies of osteocytes.  相似文献   

11.
In this study, carbon fiber electrodes were incorporated within a hollow microneedle array, which was fabricated using a digital micromirror device-based stereolithography instrument. Cell proliferation on the acrylate-based polymer used in microneedle fabrication was examined with human dermal fibroblasts and neonatal human epidermal keratinocytes. Studies involving full-thickness cadaveric porcine skin and trypan blue dye demonstrated that the hollow microneedles remained intact after puncturing the outermost layer of cadaveric porcine skin. The carbon fibers underwent chemical modification in order to enable detection of hydrogen peroxide and ascorbic acid; electrochemical measurements were demonstrated using integrated electrode-hollow microneedle devices.  相似文献   

12.
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.  相似文献   

13.
Lee DH  Lee W  Um E  Park JK 《Biomicrofluidics》2011,5(3):34117-341179
Precise temporal control of microfluidic droplets such as synchronization and combinatorial pairing of droplets is required to achieve a variety range of chemical and biochemical reactions inside microfluidic networks. Here, we present a facile and robust microfluidic platform enabling uniform interval control of flowing droplets for the precise temporal synchronization and pairing of picoliter droplets with a reagent. By incorporating microbridge structures interconnecting the droplet-carrying channel and the flow control channel, a fluidic pressure drop was derived between the two fluidic channels via the microbridge structures, reordering flowing droplets with a defined uniform interval. Through the adjustment of the control oil flow rate, the droplet intervals were flexibly and precisely adjustable. With this mechanism of droplet spacing, the gelation of the alginate droplets as well as control of the droplet interval was simultaneously achieved by additional control oil flow including calcified oleic acid. In addition, by parallel linking identical microfluidic modules with distinct sample inlet, controlled synchronization and pairing of two distinct droplets were demonstrated. This method is applicable to facilitate and develop many droplet-based microfluidic applications, including biological assay, combinatorial synthesis, and high-throughput screening.  相似文献   

14.
We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces—for example, to form spherical droplets that encapsulate spherical particles—in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics.  相似文献   

15.
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.  相似文献   

16.
One striking feature of molecular rotors is their ability to change conformation with detectable optical signals through molecular motion when stimulated. However, due to the strong intermolecular interactions, synthetic molecular rotors have often relied on fluid environments. Here, we take advantage of the solid-state intramolecular motion of aggregation-induced emission (AIE) molecular rotors and one-dimensional fibers, developing highly sensitive optical fiber sensors that respond to ambient humidity rapidly and reversibly with observable chromatic fluorescence change. Moisture environments induce the swelling of the polymer fibers, activating intramolecular motions of AIE molecules to result in red-shifted fluorescence and linear response to ambient humidity. In this case, polymer fiber provides a process-friendly architecture and a physically tunable medium for the embedded AIE molecules to manipulate their fluorescence response characteristics. Assembly of sensor fibers could be built into hierarchical structures, which are adaptive to diverse-configuration for spatial-temporal humidity mapping, and suitable for device integration to build light-emitting sensors as well as touchless positioning interfaces for intelligence systems.  相似文献   

17.
The effects of global warming, pollution in river effluents, and changing ocean currents can be studied by characterizing variations in phytoplankton populations. We demonstrate the design and fabrication of a Microflow Cytometer for characterization of phytoplankton. Guided by chevron-shaped grooves on the top and bottom of a microfluidic channel, two symmetric sheath streams wrap around a central sample stream and hydrodynamically focus it in the center of the channel. The lasers are carefully chosen to provide excitation light close to the maximum absorbance wavelengths for the intrinsic fluorophores chlorophyll and phycoerythrin, and the excitation light is coupled to the flow cytometer through the use of an optical fiber. Fluorescence and light scatter are collected using two multimode optical fibers placed at 90-degree angles with respect to the excitation fiber. Light emerging from these collection fibers is directed through optical bandpass filters into photomultiplier tubes. The cytometer measured the optical and side scatter properties of Karenia b., Synechococcus sp., Pseudo-Nitzchia, and Alexandrium. The effect of the sheath-to-sample flow-rate ratio on the light scatter and fluorescence of these marine microorganisms was investigated. Reducing the sample flow rate from 200 μL/min to 10 μL/min produced a more tightly focused sample stream and less heterogeneous signals.  相似文献   

18.
Yazdi SH  White IM 《Biomicrofluidics》2012,6(1):14105-141059
We report the demonstration of an optofluidic surface enhanced Raman spectroscopy (SERS) device that leverages a nanoporous microfluidic matrix to improve the SERS detection performance by more than two orders of magnitude as compared to a typical open microfluidic channel. Although it is a growing trend to integrate optical biosensors into microfluidic channels, this basic combination has been detrimental to the sensing performance when applied to SERS. Recently, however, synergistic combinations between microfluidic functions and photonics (i.e., optofluidics) have been implemented that improve the detection performance of SERS. Conceptually, the simplest optofluidic SERS techniques reported to date utilize a single nanofluidic channel to trap nanoparticle-analyte conjugates as a method of preconcentration before detection. In this work, we leverage this paradigm while improving upon the simplicity by forming a 3D nanofluidic network with packed nanoporous silica microspheres in a microfluidic channel; this creates a concentration matrix that traps silver nanoclusters and adsorbed analytes into the SERS detection volume. With this approach, we are able to achieve a detection limit of 400 attomoles of Rhodamine 6G after only 2 min of sample loading with high chip-to-chip repeatability. Due to the high number of fluidic paths in the nanoporous channel, this approach is less prone to clogging than single nanofluidic inlets, and the loading time is decreased compared to previous reports. In addition, fabrication of this microsystem is quite simple, as nanoscale fabrication is not necessary. Finally, integrated multimode fiber optic cables eliminate the need for optical alignment, and thus the device is relevant for portable and automated applications in the field, including point-of-sample and point-of-care detection. To illustrate a relevant field-based application, we demonstrate the detection of 12 ppb of the organophosphate malathion in water using the nanofluidic SERS microsystem.  相似文献   

19.
Cell encapsulation technology is a promising strategy applicable to tissue engineering and cell therapy. Many advanced microencapsulation chips that function via multiple syringe pumps have been developed to generate mono-disperse hydrogel beads encapsulating cells. However, their operation is difficult and only trained microfluidic engineers can use them with dexterity. Hence, we propose a microfluidic manifold system, driven by a single syringe pump, which can enable the setup of automated flow sequences and generate highly mono-disperse alginate beads by minimizing disturbances to the pump pressure. The encapsulation of P19 mouse embryonic carcinoma cells and embryonic body formation are demonstrated to prove the efficiency of the proposed system.  相似文献   

20.
采用相转化纺丝/烧结技术制备Al2O3多孔中空纤维膜,并以此为载体,通过晶种法考察不同晶种诱导条件制备TS-1复合中空纤维膜,并采用扫描电子显微镜、气体渗透性能测试装置等设备对所制备的TS-1复合中空纤维膜进行微观结构及渗透性能的表征。结果表明,晶种法制备的TS-1复合中空纤维膜的N2渗透速率较小,并且表面平整无缺陷,因此该方法适合制备性能优良的TS-1复合中空纤维膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号