首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
EPO即促红细胞生成素,成年人主要由肾脏分泌,其作用是促进红细胞的生成。现在人们已能用基因工程技术重组红细胞生成素,即rhEPO,其作用和天然EPO一样,可提高人体血液中红细胞的含量。rhEPO的问世给竞技体育的公平竞争带来了挑战。因为rhEPO和天然EPO一样可通过增加红细胞的数目提高运动员的耐力。某些耐力性运动项目的运动员大剂量地使用rhEPO以达到提高成绩夺取金牌的目的,但大剂量的rhEPO注射会对运动员的身体造成很大的危害,也亵渎了体育比赛的公平性。  相似文献   

2.
通过动物实验对运动大鼠红细胞参数及影响因子EPO、T含量变化的研究,表明复方中药能够减缓运动训练造成的红细胞参数下降现象,血清中促红细胞生成素的含量运动服药组与其他各组存在显著性差异(P〈0.01)。可见,复方中药能在运动训练期间刺激血清中促红细胞生成素含量的增加,协调相对稳定的血睾酮量共同作用红细胞各参数的变化,进而改善机体血液载氧能力,为复方中药在消除疲劳、提高运动能力方面的应用提供科学依据。  相似文献   

3.
促红细胞生成素(erythropoiesis,EPO)是一种调节红细胞生成的造血因子,因其能提高运动员的耐力而倍受体育界各方人士的关注。为此,国际奥委会已把EPO列为竞技比赛的违禁药物。本文通过文献综述法,从EPO的结构、功能、调节机制以及运动对EPO的影响和滥用EPO造成的毒副作用等方面,对EPO及其在体育运动实践中的应用进行了阐述,并对其最新发展状况及研究前景做了展望,以期为教练员和运动员正确认识和使用EPO提供帮助。  相似文献   

4.
高原训练对中长跑运动员血液携氧能力的影响   总被引:5,自引:1,他引:4  
血液携氧能力主要取决于红细胞的血红蛋白。促红细胞生成素(EPO)能够促进红细胞的分化成熟进而提高血液中血红蛋白(Hb)的含量来提高血液携氧能力,提高运动员的训练水平。在高原低氧情况下,合理训练可提高体内的EPO水平,达到较好的训练效果。通过对中长跑运动员高原训练前后EPO和血氧饱和度(SpO2)等指标的观察,为高原训练手段的合理应用提供一定的理论及实践依据。  相似文献   

5.
高原适应对于人类有着显的生物学意义,象促红细胞生成素的(EPO)的产生和血红素浓度的变化。EPO增加引起红细胞量和Hb浓度的增加;血红素浓度增加可以提高血液运输氧的能力和组织氧化能力。居住在适宜高度(大于2,000~2,500m),通过持续增加EPO的量,诱导红细胞和血红素浓度的增加,改善氧运输能力、提高VO2max可以有效地提高运动成绩。  相似文献   

6.
高住低训时红细胞与EPO变化关系的研究   总被引:6,自引:0,他引:6  
为了解红细胞等血象指标在高住低训中与EPO的变化关系,将14名男性大学生分为:1)高住低训组(living high training low group, HiLo组);2)高住安静组(living high control group, Hi-c组);每组7人.受试者每天低压低氧(2 500 m模拟高度)暴露12 h;HiLo组每天在常压常氧环境下进行一次3 000 m跑训练;Hi-c组在实验期间不进行任何运动训练.实验为期4周.结果表明,在间断性低氧暴露初期HiLo组的血红细胞(red blood cell, RBC)、血红蛋白(hemoglobin, Hb)、血球压积(hematocrit, Hct)即有所升高,第19 d后达到最高峰.Hi-c 组的变化与HiLo组基本相似,但高峰的出现在第28 d.促红细胞生成素(erythropoietin, EPO)在间断性低氧暴露初期就有升高变化,11 d后出现高峰.这一高峰与间断性低氧暴露19 d后RBC、Hb、Hct的高峰有关.这表明间断性低氧暴露对EPO形成存在着慢性积累的过程,而红细胞的生成与释放对EPO存在量的依赖效应.  相似文献   

7.
重组人生长激素(rhGH)长效制剂能延长药物在人体内的滞留时间,有效增加患者用药的顺应性、降低用药相关的医护成本。本文重点综述微球、生物可降解性、凝胶等重组人生长激素长效制剂的制备方法及其研究进展。  相似文献   

8.
机体在高原训练环境下会发生一系列生理生化的变化。红细胞、血红蛋白、红细胞压积均有不同程度升高,其中血红蛋白变化有一个或两个峰值。高原训练后一段时间运动能力高峰期存在;高原训练后EPO水平大幅度升高;红细胞2,3-DPG有明显升高趋势,缺氧时,2,3-DPG使氧离曲线右移是否有利,还值得怀疑,有待进一步探索。高原训练可以有效地提高红细胞变形能力,但这种变形能力会随着下高原时间的延续而逐渐消失。  相似文献   

9.
目的:为探讨运动性血红蛋白低下时机体铁代谢、红细胞破坏与血红蛋白下降间的关系,为运动性血红蛋白低下的发生机制及预防提供依据。方法:随机选取广州体育学院体育教育系学生30人,男女各15人,进行起始负荷为60%最大心率强度,每周强度递增10%的跑步运动,5d/周,4周后测试受试者Hb、Ret、SF、Fer、sTfR和红细胞抗氧化指标MDA、SOD、CAT、GSH-px。结果:4周递增负荷跑步运动后受试者呈现运动性血红蛋白低下,血清铁蛋白持续性下降,转铁蛋白受体呈下降趋势或不变,但血清铁无明显变化;红细胞抗氧化酶的含量升高,脂质过氧化产物MDA呈持续增加趋势。结论:4周的递增负荷跑步运动中,红细胞自由基的生成增加及红细胞抗氧化能力的相对降低引起的红细胞破坏增加可能是运动性血红蛋白低下的发生原因,而不是由单纯缺铁所致。  相似文献   

10.
红细胞生成在间歇性低氧训练中的动态观察   总被引:3,自引:0,他引:3  
动态观察间歇性低氧训练(IHT)对人体红细胞生成的影响,男大学生15名随机分成对照组和IHT组,IHT每天吸低氧(浓度14%~10%)50~60min,连续4周。在低氧训练开始前、低氧训练的第1、3、10、15、17、22、24天,低氧训练结束后的第5、8、14天取血测试,结果发现,间歇性低氧训练可以引起促红细胞生成素的分泌增多,可溶性转铁蛋白受体增多,红细胞计数和压积明显升高,血红蛋白浓度变化不明显,结论:间歇性低氧训练可以引起造血系统的活跃,并至少可持续到低氧结束后8天。建议:运动员可在间歇低氧训练结束后8天内参赛,获得良好效能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号