首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在当今Si基光电子研究中,SiGe材料系自组织Ge量子点是最有希望对Si材料运用能带工程实现人工改性的途径之一。Ge在Si上 4.2 %的晶格失配可以制造大小尺寸不同的纳米结构,还可适应其他多种器件需要。对自组织Ge量子点的形成过程、形貌演化、光学和电学性质,以及提高量子点平面排布有序性的方法进行了系统的分析和研究,并着重介绍了实验中发现的新现象、新模型和新方法,其中包括量子点的反常形状跃迁、自覆盖效应、Ge/Si量子点的II型能带结构、Ge/Si量子点的载流子热弛豫模型和纳米尺寸的周期性图形衬底的全息制备方法  相似文献   

2.
The current development trend towards miniaturized portable electronic devices has signiicantly increased the demand for ultrathin, lexible and sustainable on-chip micro-supercapacitors that have enormous potential to complement, or even to replace, micro-bateries and electrolytic capacitors. In this regard,graphene-based micro-supercapacitors with a planar geometry are promising micro-electrochemical energy-storage devices that can take full advantage of planar coniguration and unique features of graphene.his review summarizes the latest advances in on-chip graphene-based planar interdigital micro-supercapacitors, from the history of their development, representative graphene-based materials(graphene sheets, graphene quantum dots and graphene hybrids) for their manufacture, typical microfabrication strategies(photolithography techniques, electrochemical methods, laser writing, etc.),electrolyte(aqueous, organic, ionic and gel), to device coniguration(symmetric and asymmetric). Finally,the perspectives and possible development directions of future graphene-based micro-supercapacitors are briely discussed.  相似文献   

3.
he behavior of individual microscopic particles,such as an atom(or a photon),predicted using quantum mechanics,is dramatically diferent from the behavior of classical particles,such as a planet,determined using classical mechanics.How can the counter-intuitive behavior of the microscopic particle be veriied and manipulated experimentally?David Wineland and Serge Haroche,who were awarded the Nobel Priz in physics in 2012,developed a set of methods to isolate the ions and photons from their environment to create a genuine quantum system.Furthermore,they also developed methods to measure and manipulate these quantum systems,which open a path not only to explore the fundamental principles of quantum mechanics,but also to develop a much faster computer:a quantum computer.  相似文献   

4.
Chemotherapy drugs, used for prevention of uncontrolled cell proliferation in certain tissues as well as inducing apoptosis in tumor cells, are important candidates for treatment of cancer. The synthesized 2-amino-4H-chromene-3-carbonitrile derivatives effective on cancerous cells resistant to other drugs such as Paclitaxel were used due to their ability in induction of apoptosis. The growth inhibitory and inducing apoptosis activities were determined. In order to make it target-oriented, the best compound was conjugated with gold nanoparticles (NPs) by aspartic acid with chemical reduction method. Cytotoxicity effect of 2-amino-4H-chromene-3-carbonitrile derivatives against the T47D breast cancer cell line was determined by MTT assay. The synthesis of gold NPs was confirmed by transmission electron microscopy, UV–Vis and dynamic light scattering. To assess the effects of compounds on the process of apoptosis, staining methods with acridine orange–ethidium bromide and Hoechst staining by fluorescence microscopy and DNA fragmentation by the diphenylamine method were used. The synthesized compounds containing two NH2 groups on benzene rings, demonstrated more cytotoxicity effect. The effect of conjugation with gold NPs and the induction of apoptosis were studied with the best compound. The cytotoxicity effects of the synthesized 2-amino-4H-chromene-3-carbonitrile compounds were changed by replacement of NO2 group on thiol ring with different chemical groups on the benzene ring. Analyses of treated cell lines by conjugated and non-conjugated forms of compounds verified their ability in inducing apoptosis while conjugated form demonstrated higher apoptosis.  相似文献   

5.
BackgroundGain-of-function of fibroblast growth factor receptor 3 (FGFR3) is involved in the pathogenesis of many tumors. More and more studies have focused on the potential usage of therapeutic single-chain Fv (ScFv) antibodies against FGFR3. RNA interference (RNAi) has been considered as a promising therapeutic method against cancer. A tool which can deliver small interference RNAs (siRNAs) into FGFR3 positive cancer cells is very promising for anti-tumor therapy.ResultsIn this study, a novel fusion protein R3P, which consists of FGFR3-ScFv and protamine, was generated in Escherichia coli by inclusion body expression strategy and Ni-NTA chromatography. Its yield reached 10 mg per liter of bacterial culture and its purity was shown to be higher than 95%. 1 μg of R3P could efficiently bind to about 2.5 pmol siRNAs and deliver siRNAs into FGFR3 positive RT112 and K562 cells. Annexin V staining results showed that R3P can deliver the amplified breast cancer 1 (AIB1) siRNAs to induce RT112 cell apoptosis.ConclusionThese results indicated that R3P was a promising carrier tool to deliver siRNAs into FGFR3 positive cancer cells and to exert anti-tumor effect.  相似文献   

6.
Despite being invasive within surrounding brain tissues and the central nervous system, little is known about the mechanical properties of brain tumor cells in comparison with benign cells. Here, we present the first measurements of the peak pressure drop due to the passage of benign and cancerous brain cells through confined microchannels in a “microfluidic cell squeezer” device, as well as the elongation, speed, and entry time of the cells in confined channels. We find that cancerous and benign brain cells cannot be differentiated based on speeds or elongation. We have found that the entry time into a narrow constriction is a more sensitive indicator of the differences between malignant and healthy glial cells than pressure drops. Importantly, we also find that brain tumor cells take a longer time to squeeze through a constriction and migrate more slowly than benign cells in two dimensional wound healing assays. Based on these observations, we arrive at the surprising conclusion that the prevailing notion of extraneural cancer cells being more mechanically compliant than benign cells may not apply to brain cancer cells.  相似文献   

7.
The prevention and cure of cancer has been one of the great goals of medical science for many years. Although only partial success can yet be claimed, intensive research on an international basis has led to a greatly improved understanding of the mechanism of its causation. This masterly review of the current state of knowledge, by one of the most eminent research workers in this field, concludes on an optimistic note: there are sound grounds for supposing that cancerous cells can potentially be restored to their normal state and there are clues to ways of finding the kinds of substance which might effect this.  相似文献   

8.
Quantum information processing based on magnetic ions has potential for applications as the ions can be modified in their electronic properties and assembled by a variety of chemical methods. For these systems to achieve individual spin addressability and high energy efficiency, we exploited the electric field as a tool to manipulate the quantum behaviours of the rare-earth ion which has strong spin-orbit coupling. A Ce:YAG single crystal was employed with considerations to the dynamics and the symmetry requirements. The Stark effect of the Ce3+ ion was observed and measured. When demonstrated as a quantum phase gate, the electric field manipulation exhibited high efficiency which allowed up to 57 π/2 operations before decoherence with optimized field direction. It was also utilized to carry out quantum bang-bang control, as a method of dynamic decoupling, and the refined Deutsch-Jozsa algorithm. Our experiments highlighted rare-earth ions as potentially applicable qubits because they offer enhanced spin-electric coupling which enables high-efficiency quantum manipulation.  相似文献   

9.
The poor solubility of many newly discovered drugs has resulted in numerous challenges for the time-controlled release of therapeutics. In this study, an advanced drug delivery platform to encapsulate and deliver hydrophobic drugs, consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporated within poly (ethylene glycol) (PEG) microgels, was developed. PLGA nanoparticles were used as the hydrophobic drug carrier, while the PEG matrix functioned to slow down the drug release. Encapsulation of the hydrophobic agents was characterized by fluorescence detection of the hydrophobic dye Nile Red within the microgels. In addition, the microcomposites prepared via the droplet-based microfluidic technology showed size tunability and a monodisperse size distribution, along with improved release kinetics of the loaded cargo compared with bare PLGA nanoparticles. This composite system has potential as a universal delivery platform for a variety of hydrophobic molecules.  相似文献   

10.
Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool.  相似文献   

11.
Demand for analysis of rare cells such as circulating tumor cells in blood at the single molecule level has recently grown. For this purpose, several cell separation methods based on antibody-coated micropillars have been developed (e.g., Nagrath et al., Nature 450, 1235–1239 (2007)). However, it is difficult to ensure capture of targeted cells by these methods because capture depends on the probability of cell-micropillar collisions. We developed a new structure that actively exploits cellular flexibility for more efficient capture of a small number of cells in a target area. The depth of the sandwiching channel was slightly smaller than the diameter of the cells to ensure contact with the channel wall. For cell selection, we used anti-epithelial cell adhesion molecule antibodies, which specifically bind epithelial cells. First, we demonstrated cell capture with human promyelocytic leukemia (HL-60) cells, which are relatively homogeneous in size; in situ single molecule analysis was verified by our rolling circle amplification (RCA) method. Then, we used breast cancer cells (SK-BR-3) in blood, and demonstrated selective capture and cancer marker (HER2) detection by RCA. Cell capture by antibody-coated microchannels was greater than with negative control cells (RPMI-1788 lymphocytes) and non-coated microchannels. This system can be used to analyze small numbers of target cells in large quantities of mixed samples.  相似文献   

12.
Ultrasound is being investigated as a trigger mechanism to deliver high concentrations of chemotherapy drugs to cancerous tissues using polymeric micelles. In this paper, we examined the kinetics of acoustic release of doxorubicin using stabilized and non-stabilized micelles. Kinetic models were used to regress release and re-encapsulation time constants for three different compounds, namely non-stabilized Pluronic® P105 micelles, P105 micelles stabilized using an interpenetrating network of N,N-diethylacrylamide and micelles formed by PEO-b-poly(NIPAAm-co-HEMA-lactaten). Results showed that the kinetic release constant (kr) depends on the micellar system under investigation. On the other hand, there is no statistically significant difference between re-encapsulation rate constants for stabilized and unstabilized micelles. We hypothesize that kr depends on the degree of cross-linking or stabilization.  相似文献   

13.
Currently, microbiological techniques such as culture enrichment and various plating techniques are used for detection of pathogens. These expensive and time consuming methods can take several days. Described below is the design, fabrication, and testing of a rapid and inexpensive sensor, involving the use of microelectrodes in a microchannel, which can be used to detect single bacterial cells electrically (label-free format) in real time. As a proof of principle, we have successfully demonstrated real-time detection of target yeast cells by measuring instantaneous changes in ionic impedance. We have also demonstrated the selectivity of our sensors in responding to target cells while remaining irresponsive to nontarget cells. Using this technique, it can be possible to multiplex an array of these sensors onto a chip and probe a complex mixture for various types of bacterial cells.  相似文献   

14.
Oral cancer has emerged as an alarming public health problem with increasing incidence and mortality rates all over the world. Therefore, the implementation of newer screening and early detection approaches are of utmost importance which could reduce the morbidity and mortality associated with this disease. Sensitive and specific biomarkers for oral cancer are likely to be most effective for screening, diagnosis, staging and follow-up for this dreaded malignancy. Unlike other deep cancers, oral cancer is located in oral cavity. Hence, the direct contact between saliva and oral cancer lesion makes the measurement of tumor markers in saliva an attractive alternative to serum and tissue testing. The DNA, RNA and protein molecules derived from the living cancer cells can be conveniently obtained from saliva. Thus, salivary biomarkers, a non-invasive alternative to serum and tissue-based biomarkers may be an effective modality for early diagnosis, prognostication and monitoring post therapy status. In the current post-genomic era, various technologies provide opportunities for high-throughput approaches to genomics and proteomics; which have been used to evaluate altered expressions of gene and protein targets in saliva of oral cancer patients. The emerging field of salivary biomarkers has great potentials to prove its clinical significance to combat oral cancer. Hence, we have reviewed importance of several salivary genomics and proteomics biomarkers for oral cancer.  相似文献   

15.
Digital information exchange enables quick creation and sharing of information and thus changes existing habits. Social media is becoming the main source of news for end-users replacing traditional media. This also enables the proliferation of fake news, which misinforms readers and is used to serve the interests of the creators. As a result, automated fake news detection systems are attracting attention. However, automatic fake news detection presents a major challenge; content evaluation is increasingly becoming the responsibility of the end-user. Thus, in the present study we used information quality (IQ) as an instrument to investigate how users can detect fake news. Specifically, we examined how users perceive fake news in the form of shorter paragraphs on individual IQ dimensions. We also investigated which user characteristics might affect fake news detection. We performed an empirical study with 1123 users, who evaluated randomly generated stories with statements of various level of correctness by individual IQ dimensions. The results reveal that IQ can be used as a tool for fake news detection. Our findings show that (1) domain knowledge has a positive impact on fake news detection; (2) education in combination with domain knowledge improves fake news detection; and (3) personality trait conscientiousness contributes significantly to fake news detection in all dimensions.  相似文献   

16.
Living cells are a fascinating demonstration of nature’s most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax—thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical response of cells. Insights from such studies will have implications in areas such as drug delivery, medicine, tissue engineering, and biomedical diagnostics.  相似文献   

17.
18.
Supramolecular chemistry provides a means to integrate multi-type molecules leading to a dynamic organization. The study of functional nanoscale drug-delivery systems based on supramolecular interactions is a recent trend. Much work has focused on the design of supramolecular building blocks and the engineering of supramolecular integration, with the goal of optimized delivery behavior and enhanced therapeutic effect. This review introduces recent advances in supramolecular designs of nanoscale drug delivery. Supramolecular affinity can act as a main driving force either in the self-assembly of carriers or in the loading of drugs. It is also possible to employ strong recognitions to achieve self-delivery of drugs. Due to dynamic controllable drug-release properties, the supramolecular nanoscale drug-delivery system provides a promising platform for precision medicine.  相似文献   

19.
Tumor Markers comprise a wide spectrum of biomacromolecules synthesized in excess concentration by a wide variety of neoplastic cells. The markers could be endogenous products of highly active metabolic malignant cells or the products of newly switched on genes, which remained unexprssed in early life or newly acquired antigens at cellular and sub-cellular levels. The appearance of tumor marker and their concentration are related to the genesis and growth of malignant tumors in patients. An ideal tumor marker should be highly sensitive, specific, reliable with high prognostic value, organ specificity and it should correlate with tumor stages. However, none of the tumor markers reported to date has all these characteristics. Inspite of these limitations, many tumor markers have shown excellent clinical relevance in monitoring efficacy of different modes of therapies during entire course of illness in cancer patients. Additionally, determination of markers also helps in early detection of cancer recurrence and in prognostication.  相似文献   

20.
荧光标记法检测活细胞内游离钙离子浓度的改进   总被引:5,自引:0,他引:5  
改进了活细胞内游离钙离子浓度的测定方法,即用惰性基体纳米微球包埋荧光染料,将荧光纳米微球转运进细胞,用于细胞内游离钙离子浓度的实时测定。该方法与传统方法相比,染料不易泄漏,不会出现分室现象,不易光漂白,是一种非常有实用价值的测量活细胞内游离钙离子浓度的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号