首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,二项展开式(x y)~n=sum from i=0 to n(C_n~ix~(n-i)y~i)的各项系数C_n~0,C_n~1,…,C_n~n的大小规律具有单峰性,即 当n为偶数时,C_n~0C_n~(n/2 1>)…>C_n~n; 当n为奇数时,C_n~0C_n~((n 1)/2) 1>…>C_n~n。 实际上,(ax by)~n=(sum from i=0 to n(C_n~ia~(n-i)b~ix~(n-i)y~i)(a,b∈R,ab≠0,n∈N_ ) ①的各项系数的绝对值 g_(i 1)=C_n~i|a|~(n-i)|b|~i(i=0,1,…,n) ②的大小规律也具有单峰性,本文给出这方面的结论。  相似文献   

2.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

3.
<正> (a+b)n二项展开式有n+1项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出.[(a+b)+c]n=C_n~0(a+b)nc0+C_n~1(a+b)n-1c1+…+C_n~r(a+b)n-rcr+…+C_n~n(a+b)0cn,其展开式的项数为(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2,(*)  相似文献   

4.
公式C_(n+1)~m=C_n~m+C_n~(m-1)的一个应用利用组合数性质公式C_(n+1)~m=C_n~m+C=_n~(m-1)可以求形如{n(n+1)…(n+k-1)}的数列的前n项和S_n。 [例1] 求和 S=1·2·3+2·3·4+…+n(n+1)(n+2) 解:1/3!S=1·2·3/3!+2·3·4·/3!…+n(n+1)(n+2)/3! =C_3~3+C_4~3+…+C_(n+2)~3=(C_4~4+C_4~3)+C_5~3+…+C_(n+2)~3 =(C_5~4+C_5~3)+C_6~3+…+C_(n+2)~3=…=C_(n+2)~4+C_(n+2)~3 =C_(n+3)~4=n(n+1)(n+2)(n+3)/4!,  相似文献   

5.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

6.
1988年全国高中数学联赛第一试最后一题:已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N, (a b)~n-a~n-b~n≥2~(2n)-2~(n 1)(*) 这个不等式从形式上看较难证明,经过研究,笔者发现它有许多证法,择其简单的四种介绍如下: 证一应用二项式定理,得(a b)~n-a~n-b~n=C_n~1a~(n-1)b C_n~2a~(n-2)b~2 … C _n~(n-1)ab~(n-1) (1)根据组合数性质C_n~k=C_n~(n-k),由(1)得(a b)~n-a~n-b~n=C_n~1ab~(n-1) C_n~2a~2b~(n-2) 十… C_n~(n-1)a~(n-1)b (2)(1) (2)后两边除以2得  相似文献   

7.
对于形如C_n~0+C_n~k+C_n~(2k)+…+C_n~(lk)(其中k、l∈N。n-k相似文献   

8.
关于组合恒等式的证明方法大体可归纳为如下一些: 一、在二项展开式中直接代入特别值而得组合恒等式二项展开式为 C_n~0 C_n~1x C_n~2x~2 … C_n~nx~n=(1 x)~n,其中 C_n~k=(n(n-1)…(n-k 1))/(k!)=(n!)/((n-k)!k!),k≤n,且规定C_n~0=1。若令x=1得 C_n~0 C_n~1 C_n~2 … C_n~n=2~n.(1) 令x=-1得 C_n~0-C_n~1 C_n~2-… (-1)~nC_n~n=0,(2)或 C_n~0 C_n~2 …=C_n~1 C_n~3 … *) (3) *)本  相似文献   

9.
在组合数恒等式中,有一类可以通过对等式x~α(1+x~β)~n=sum form r=0 to n(C_n~rx~(a+rB)),(1+x)~n=sum form r=0 to n(C_n~rx~r)求导或积分而得,方法简便,且能揭示其数量之间的一般关系。兹举例如下: 1、[(1+x)~n]~′=(C_n~o+C_n~1X+C_n~2X~2+C_n~3X~4+…+C_n~rX~r+…+C_n~nX~n)′,  相似文献   

10.
应用 k~2=k(k+1)/2+(k-1)k/2=C_(k+1)~2c+C_k~2,那么sum ∑ from k=1 to n=(C_2~2+…C_(n+1)~2)+(C_2~2+…+C_n~2)=C_(n+2)~2+C_(n+1)~8=((n+1)n(2n+1))/6  相似文献   

11.
文[1]提出用待定系数法求sum from j=0 to n (j~K C_n~5)的表达式,但该法不太理想,本文介绍另外两种方法,供大家参考。一、导数法展开(1+x)~n,我们有恒等式 C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n=(1+x)~n (1) 在(1)式中对x求导得 C_n~1+2C_n~2x+3C_n~3x~2+…+nC_n~nx~(n-1)=n·(1+x)~(n-1) (2) 在(2)式两端乘以x,然后再对x求导得  相似文献   

12.
一、用导数例1.求证:C_n~1+2C_n~2+3C_n~3+…+nC_n~n=n·2~(n-1) 证将(1+x)~n=C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n两边对x求导数再命x=1  相似文献   

13.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

14.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

15.
一类有关自然数的求和问题,若能将通项变形成组合数,构造出组合恒等式: C_(n-1)~m+C_(n-2)~m+C_(n-3)~m+…+C_(n+1)~m+C_m~m=C_n~(m+1)(高中代数第三册第81页18(2)题)。用其求和,则非常简捷。例1 求和 1×(3×1+1)+2×(3×2+1)+…+n(3n+1)。  相似文献   

16.
本文给出组合恒等式C_n~1+2C_N~2+3C_n~3+…+nC_n~n=n·2~(n-1)的六种证法.这个组合恒等式在证明其它组合恒等式和计算组合数的和时常常有用.  相似文献   

17.
问题:有 a_1、a_2、…、a_(n+1)件不同的奖品,全部赠给 A_1、A_2、…、A_nn个人,如果每人至少要得到一件,有多少种不同的赠送方法?错解:先从n+1件中选 n 件,分给 n 人,每人一件,有 C_(n+1)~n·P_n=(n+1)~n!种方法,余下的一件给 n 个人中的一个,有 C_n~1 种方法.∴共有 C_(n+1)~n·P_n~n·C_n~1=z(n+1)!(种).  相似文献   

18.
一、前言 1+2+3+…+n=1/2n(n+1),其公式的来由谁都明白,但对12+22+32+…+n2=1/6n(n+1)(2n+1)和13+23+33+…+n3=1/4n2(n+1)2,其公式的来由,可能就没几个人清楚了.  相似文献   

19.
对偶思想是指,在求解数学问题时,根据题目中一个式子的结构特征,构造一个与之地位完全相伺,彼此间存在内在联系的对偶式,通过二者的协同作用,从而使问题获得巧妙解答.下面介绍几种常用方法,供参考.一、倒序对偶.把已知式的各部分施以倒序调节,所得式子称为已知式的倒序对偶式,再把它们对应部分相加(或相乘),促使问题解决.例1.证明:C_n~1 2C_n~2十3C_n~3十… nC_n~n=n·2~(n-1)证明:设M=C_n~1 2C_n~2 3C_n~3 … (n一1)C_n~(n-1)十nC_n~n,其倒序对偶式为:M’=nC_n~n (n-1)C_n~n (n-2)C_n~(n-2) … C_n~1两式相加得2M=nC_n~n nC_n~(n-1) nC_n~(n-2) … nC_n~1 nC_n~n=n(C_n~n C_n~1 C_n~3 … C_n~n)=n·2~n,∴M=n·2~(n-1).例2.求M=(1 tg1°)(1 tg2°)……(1 tg44°)的值解:注意到1° 44°=2° 43°=…=45°可构成M的倒序对偶式M’,M’=(1 tg44°)(1 tg43°)……(1 tg2°)(1 tg1°),两式相乘得:  相似文献   

20.
目前已有人把(a+1/a)(b+1/b)≥25/4(a>0,b>0,a+b=1)推广为:设x_i>0(i=1,2,…,n)且x_1+x_2+…+x_n=k,则(x_1+1/x_1)(x_2+1/x_2)…(x_n+1/x_n)≥(n/k+k/n)~n当且仅当x_1=x_2=…=x_n=k/n时取等号。本文对该不等式进一步作了推广,得出两个新的结果。欲知情况如何,请看该文。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号