首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
三角函数y=Asin(ωx φ)的图象具有对称性。根据图象,由ωx φ=kπ π/2,得对称轴方程是x=1/ω(kπ π/2-φ);再由ωx φ=kπ,得对称中心是(kπ-φ/ω,0)(以上k∈Z)。下面通过一道高考题,给出求解三角函数图象对称问题的几种处理策略。  相似文献   

2.
常用于判别函数图象对称性的命题可归纳如下:命题1 若函数y=f(x)满足f(a x)=f(b-x),则y=f(x)的图象关于直线x=a b2对称.证 在y=f(x)图象上取A(a x0,y0),B(b-x0,y0),则AB中点为(a b2,y0),且对任一x0都成立,由x0任意性可知f(x)的图象关于直线x=a b2对称.推论1 若函数y=f(x)满足f(a ωx)=f(b-ωx),则y=f(ωx)关于x=12ω(a b)对称,即y=f(x)关于x=a b2对称.证 设ωx=t,则f(a t)=f(b-t),从而函数y=f(t)关于t=a b2对称,即y=f(ωx)关于直线x=a b2ω对称,或y=f(x)关于直线x=a b2对称.命题2 函数y=f(x)若满足f(a x)=-f(b-x),则y=f(x)的图象关于…  相似文献   

3.
在三角函数图象的学习中,其对称性的研究是一个重要内容.由于三角函数特有的周期性,决定了三角函数对称中心及对称轴存在时不唯一,同时也增大了问题的难度.本文拟在归纳三角函数的对称性知识的基础上,通过举例说明三角函数中对称性的应用.一、基本知识命题:函数y=sinx的对称中心是(kπ,0)(k∈Z);对称轴方程为x=kπ+π2(k∈Z).函数y=cosx的对称中心是(kπ+π2,0)(k∈Z);对称轴方程为x=kπ(k∈Z),函数y=tanx的对称中心是(12kπ,0)(k∈Z);对称轴不存在.推论1:函数y=|sinx|的对称轴方程为x=12kπ(k∈Z),对称中心不存在,函数y=|cosx|的对称轴…  相似文献   

4.
三角函数具有周期性和对称性,也可以有双对称性(对称轴或对称中心至少存在两个).例如:正弦函数y=sinx(x∈R)的对称轴为x =π/2 kπ(k∈Z),对称中心为(kπ,0)(k∈Z),周期为T=2kπ(k∈Z,k≠0);余弦函数y=cosx(x∈R)的对称轴为x=kπ(k∈Z),  相似文献   

5.
我们知道,三角函数是周期函数.正弦函数的周期是2π,正切函数的周期是π.函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的周期是2πω,函数y=Atan(ωx+φ),x≠kπω+π2ω-φω(其中A>0,ω>0,k∈Z)的周期是πω.余弦函数与余切函数有类似的结论.这些函数的周期与等差数列有何关系呢?性质1一条平行于x轴的直线y=m(m为常数)与函数y=Asin(ωx+φ),x∈R(A>0,ω>0)的图象相交,则(1)如果直线y=m(m为常数)交于函数图象的最高(或最低)点,则n个周期内有n个或n+1个交点,任意区间内的交点(不少于3个)的横坐标顺次构成等差数列,等差数列的公差就是函数周期…  相似文献   

6.
在求解三角函数有关问题时,如果能利用三角函数的图象特征解题,将起到事半功倍的作用.下面举例说明.例1如果函数y=sin2x+acos2x的图象关于直线x=π8对称,那么a=.解析:利用正弦余弦函数的图象当自变量取对称轴时函数值取得最大或最小值这一特征得:|sin2.π8+acos2.π8|=a2+1=|22+22a|,解得a=1.例2已知函数f(x)=Asin(ωx+φ)(x∈R)(A>0,ω>0,-π<φ≤π)的图象在y轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x轴在原点左侧第一个交点为N(-1,0),求函数f(x)的解析式.图1解析:由y=sinx的图象可知,从图象与x轴的交点到达图象最高点(在同…  相似文献   

7.
由于三角函数y=Asin(ωx+φ)是由正弦函数y=sinu和一次函数u=ωx+φ复合而成的,而正弦函数y=sinu的对称轴是u=kπ+π/2(k∈Z),它的对称轴总是经过图像的最高点或者最低点.所以解决函数y=Asin(ωx+φ)的对称轴问题应从正弦函数的对称轴方程或函数关于直线对称的性质着手寻找解题思路.  相似文献   

8.
1.若a=(√3cosωx,sinωx),b=(sinωx,0),其中ω∈(-1/2,5/2),函数f(x)=(a+b)·b-1/2,且f(x)的图象关于直线x=π/3对称.  相似文献   

9.
一、三角函数对称问题三角函数y=Asin(ωx+φ)的图象具有对称性.根据图象,由ωx+φ=κπ+π/2,得对称轴方程是x=1/ω(κπ+π/2-φ);再由ωx+φ=κπ,得对称中心是((κπ-φ)/ω,0)(以上k∈Z).下在同通过一道高考题,给出求解三角函数图象对称问题的几种处理策略.例1函数f(x)=sin2x+acos2x的图象关于直线x=-π/8对称,求实数a的值.分析一般地,可考虑利用公式asinx+bcosx=(a2+b21/2sin(x+φ),将f(x)化为只含一个三角式的形式,f(x)=(a2+1)1/2(sin2x·1/(a2+1)1/2+cos2x·a/(a2+1)1/2)=(a2+1)1/2sin(2x+φ),其中sinφ=a/(a2+1)1/2,cosφ=  相似文献   

10.
函数中的对称问题是函数的重要性质之一 ,它是研究函数的性质 ,作出函数图象的重要依据 ,也是高考试题中常考的考点之一 ,处理函数的有关问题要注重研究其对称性 ,利用数形结合的方法解决问题 .函数图象的对称性有图象关于点的对称及关于直线的对称 ,下面分别讨论 .一、函数 y =f (x)的图象成轴对称图形命题 1:设函数 y =f ( x)的定义域为 R,且满足条件 :f ( x a) =f ( b - x) ,则函数 y =f ( x)的图象关于直线 x =a b2 成轴对称图形 .证明 :设函数的图象上任一点 P( x,y) ,它关于直线 x =a b2 的对称点为 P′( x′,y′) ,则 x =a b- x…  相似文献   

11.
对称性是三角函数图象的重要性质,在历届高考中也屡有涉及,但教材中却很少涉及,为此,本文结合几个高考试题谈谈三角函数图象对称性问题的常见解法.一、利用三角函数对称性问题的一般结论结论函数y=sinx的对称轴方程为:x=kπ+π/2,k∈Z,对称中心为(kπ,0)(k∈Z);  相似文献   

12.
本文从定理入手,探讨与反函数有关的图象平移问题,与大家共同学习. 1.定理若函数y=f(x)的反函数为y=g(x),则函数y=f(x c)(c∈R)与y=g(x)-C的图象关于直线y=z对称. 证明设P(a,b)是函数y=f(x c)上任意一点,则b=f(a c) ①而点P(a,b)关于直线y=x的对称点为Q(b,a).因为函数y=f(x)的反函数为y=g(x),由①,得 a c=g(b),a=g(b)-C,所以点Q(b,a)在函数y=g(x)-c的图象上.  相似文献   

13.
三角函数以其基础性、工具性、综合性等特征而成为高考的重点内容.根据近年高考新课程卷的分析研究,不难发现下面考点是每年高考的重点内容,预计它们还是今后高考命题的首选题材.下面探求这几类考点及其求解策略.考点1 三角函数概念与性质应用问题例1 (2003年新课程卷文科高考题)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(3π4,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.解析:一般地,函数y=f(x)(x∈R)的图象自身关于点(h,k)对称f(h+x)+f(h-x)=2k(或f(x)+f(2h-x)=2k);f(x)(x∈R)的图象关于直线x=h对…  相似文献   

14.
正引理(1)若函数y=f(x)在定义域D上可导,且a∈D,则函数y=f(x)的图象关于点(a,f(a))对称 函数y=f'(x)的图象关于直线x=a对称;(2)三次函数f(x)=ax3+bx2+cx+d(a≠0)的图象Γ关于点A(-b/3a,f(-b/3a))对称  相似文献   

15.
<正>三角函数一直以来都是高考的重点,而正弦函数y=Asin(ωx+φ)或余弦函数y=Acos(ωx+φ)是三角函数中较为常见的形式。正弦函数的单调性主要可分以下两种情况来讨论:(1)函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把(ωx+φ)看作一个整体。比如:由2kπ-π2≤ωx+φ≤2kπ+π2(k∈Z)解出x的范围,所得区间即为增区间;由2kπ+π2≤ωx+φ≤2kπ+3π2  相似文献   

16.
结论1设a、b为常数,则函数y=f(x)的图象与函数y=g(x)的图象关于直线x=a+b/2对称的充要条件是:对任意实数x,都有f(a+x)= g(b-x).证明:(1)充分性:设点P(a+x0,y0)是函数y=f(x)的图象上任意  相似文献   

17.
在高三复习备考中,笔者遇到如下问题:例1已知函数f x=sin x+tan x.项数为27的等差数列a n满足a n∈-π2,π2,且公差d≠0,若f a 1+f a 2+…+f a 27=0,则当k=时,f a k=0.这是2009年上海市高考题,普遍能找到的解答如下:因为函数f x=sin x+tan x是奇函数,所以f(x)的图象关于原点对称,其图象过原点.而等差数列a n有27项,a n∈-π2,π2.  相似文献   

18.
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a.b)对称的充要条件是:f(x) f(2a-x)=2b推论:函数y=f(x)的图像关于原点O对称的充要条件是:f(x) f(-x)=0定理2.函数f=f(x)的图像关于直线x=a对称的充要条件是:f(a x)=f(a-x)即f(x)=f(2a-x)推论:函数y=f(x)的图像关于y轴对称的充要条件是:f(x)=f(-x)定理3①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。二、不同函数对称性的探究定理4.函数y=f(x)与y=2b-f...  相似文献   

19.
<正>一、函数的对称性定理1:若函数y=f(x)定义域为R,且满足条件:f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=(a+b)/2对称。定理2:若函数y=f(x)定义域为R,且满足条件:f(a+x)+f(b-x)=c(a,b,c为常数),则函数y=f(x)的图像关于点  相似文献   

20.
课本中给出了奇偶函数的定义:f(x)是奇函数f(-x)=-f(x),f(x)是偶函数f(-x)=f(x).它们的图象特征是:奇函数的图象关于原点对称,偶函数的图象关于y轴对称.关于原点(y轴)对称的函数是奇(偶)函数.把以上结论加以推广:就有:命题1:设函数y=f(x)的定义域为R,且满足条件f(a x)=f(b-x),则函数y=f(x)的图象关于直线x=a2 b对称.命题2:定义在R上的函数y=f(x)满足条件f(x a)=-f(b-x),则y=f(x)的图象关于点a2 b,0对称.这两个命题是关于同一个函数图象本身的对称性,对于两个函数图象之间的对称性,有下列结论:命题3:定义在R上的函数y=f(x),函数y=f(a x)与y…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号