首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Purpose

To compare the occurrence and characteristics of repeated-sprint (RS) activity in elite team sport competition when classified according to speed and/or acceleration, and their interaction via metabolic power (Pmet). Methods: Elite male hockey players (N = 16) wore player-tracking devices in six international matches. Sprint efforts were defined using four separate classifications: speed >5.5 m?s?1, acceleration >1.5 m?s?2, speed-or-acceleration, and Pmet >25.5 W?kg?1. RS bouts were defined as ≥3 efforts with mean recovery ≤21 s. For Pmet, RS bouts were also classified using a maximal recovery period ≤21 s. The number of sprint efforts and RS bouts, and the number of efforts, effort durations and recovery periods within RS bouts, were compared across each classification method, and between mean and maximal recovery criteria. Results: More RS bouts were identified via Pmet (8.5 ± 2.8) than either speed and/or acceleration, and comprised more efforts (4.0 ± 0.4) with shorter recovery periods (11.5 ± 1.8 s). Fewer RS bouts (7.3 ± 2.8 vs. 8.5 ± 2.8) were identified with a maximum rather than mean recovery criterion. Conclusions: Definitions of sprint efforts and recovery periods which reflect ATP depletion and replenishment via Pmet suggest that RS activity occurs frequently in team sport competition, and is more demanding than when speed and/or acceleration are used to define RS activity in variable-speed locomotion.  相似文献   

2.
To characterise timing of movements and evaluate performance effects of technique alterations in V2 ski skating, 13 elite male cross-country skiers (age, 23 ± 2 years; stature, 182 ± 6 cm; body mass, 76 ± 8 kg; V2 V?O2max, 79.3 ± 4.4 mL · kg?1 · min?1) were tested four times during the preparation and competition phase on a roller ski treadmill. Each test consisted of submaximal intensities of exercise for determination of oxygen cost followed by one 1000-m performance test. Hip movement (from accelerometer data) and joint angles (2D video) were determined for high-intensity exercise (6° and 3.5 m · s?1; ~ 97–100% of V?O2peak). Each ski thrust consisted of three phases: gliding phase (18–50% of cycle time), poling phase (50–70% of cycle time), and kick phase (70–78% of cycle time). Flexion/extension of the hip initiated all phases, followed by the respective joints in legs and arms. Mixed-model analysis, adjusting for systematic time-point effects, identified that both reduced vertical hip acceleration and increased cycle time gave a small likely reduction in oxygen cost and 1000-m time. In conclusion, well-developed hip movement is a key characteristic of the V2 technique for elite-standard skiers’ long-term performance development.  相似文献   

3.
Abstract

The aims of the study were to investigate blood lactate recovery and respiratory variables during diagonal skiing of variable intensity in skiers at different performance levels. Twelve male cross-country skiers classified as elite (n=6; [Vdot]O2max=73±3 ml · kg?1 · min?1) or moderately trained (n=6; [Vdot]O2max=61±5 ml · kg?1 · min?1) performed a 48-min variable intensity protocol on a treadmill using the diagonal stride technique on roller skis, alternating between 3 min at 90% and 6 min at 70% of [Vdot]O2max. None of the moderately trained skiers were able to complete the variable intensity protocol and there was a difference in time to exhaustion between the two groups (elite: 45.0±7.3 min; moderately trained: 31.4±10.4 min) (P<0.05). The elite skiers had lower blood lactate concentrations and higher blood base excess concentrations at all 70% workloads than the moderately trained skiers (all P<0.05). In contrast, [Vdot] E/[Vdot]O2 and [Vdot] E/[Vdot]CO2 at the 70% [Vdot]O2max workloads decreased independently of group (P<0.05). Partial correlations showed that [Vdot]O2max was related to blood lactate at the first and second intervals at 70% of [Vdot]O2max (r=?0.81 and r=?0.82; both P<0.01) but not to [Vdot] E/[Vdot]O2, [Vdot] E/[Vdot]CO2 or the respiratory exchange ratio. Our results demonstrate that during diagonal skiing of variable intensity, (1) elite skiers have superior blood lactate recovery compared with moderately trained skiers, who did not show any lactate recovery at 70% of [Vdot]O2max, suggesting it is an important characteristic for performance; and (2) the decreases in respiratory exchange ratio, [Vdot] E/[Vdot]O2, and [Vdot] E/[Vdot]CO2 do not differ between elite and moderately trained skiers.  相似文献   

4.
Background: Q-Factor(QF), or the inter-pedal width, in cycling is similar to step-width in gait. Although increased step-width has been shown to reduce peak knee abduction moment(KAbM), no studies have examined the biomechanical effects of increased QF in cycling at different workrates in healthy participants.Methods: A total of 16 healthy participants(8 males, 8 females, age: 22.4 ± 2.6 years, body mass index: 22.78 ± 1.43 kg/m^2, mean ± SD) participated.A motion capture system and customized instrumented pedals were used to collect 3-dimensional kinematic(240 Hz) and pedal reaction force(PRF)(1200 Hz) data in 12 testing conditions: 4 QF conditions—Q1(15.0 cm), Q2(19.2 cm), Q3(23.4 cm), and Q4(27.6 cm)—under 3 workrate conditions—80 watts(W), 120 W, and 160 W. A 3 × 4(QF × workrate) repeated measures of analysis of variance were performed to analyze differences among conditions(p < 0.05).Results: Increased QF increased peak KAbM by 47%, 56%, and 56% from Q1 to Q4 at each respective workrate. Mediolateral PRF increased from Q1 to Q4 at each respective workrate. Frontal-plane knee angle and range of motion decreased with increased QF. No changes were observed for peak vertical PRF, knee extension moment, sagittal plane peak knee joint angles, or range of motion.Conclusion: Increased QF increased peak KAbM, suggesting increased medial compartment loading of the knee. QF modulation may influence frontal-plane joint loading when using stationary cycling for exercise or rehabilitation purposes.  相似文献   

5.
BackgroundAnkle complex proprioceptive ability, needed in active human movement, may change from childhood to elderly adulthood; however, its development across all life stages has remained unexamined. The aim of the present study was to investigate the across-the-lifespan trend for proprioceptive ability of the ankle complex during active ankle inversion movement.MethodsThe right ankles of 118 healthy right-handed participants in 6 groups were assessed: children (6–8 years old), adolescents (13–15 years old), young adults (18–25 years old), middle-aged adults (35–50 years old), old adults (60–74 years old), and very old adults (75–90 years old). While the participants were standing, their ankle complex proprioception was measured using the Active Movement Extent Discrimination Apparatus.ResultsThere was no significant interaction between the effects of age group and gender on ankle proprioceptive acuity (F (5, 106) = 0.593, p = 0.705, η2p = 0.027). Simple main effects analysis showed that there was a significant main effect for age group (F (5, 106) = 22.521, p < 0.001, η2p = 0.515) but no significant main effect for gender (F (1,106) = 2.283, p = 0.134, η2p = 0.021) between the female (0.723 ± 0.092, mean ± SD) and the male (0.712 ± 0.083) participants. The age-group factor was associated with a significant linear downward trend in scores (F (1, 106) = 10.584, p = 0.002, η2p = 0.091) and a strong quadratic trend component (F (1,106) = 100.701, p < 0.001, η2p = 0.480), producing an asymmetric inverted-U function.ConclusionThe test method of the Active Movement Extent Discrimination Apparatus is sensitive to age differences in ankle complex proprioception. For proprioception of the ankle complex, young adults had significantly better scores than children, adolescents, old adults, and very old adults. The middle-aged group had levels of ankle proprioceptive acuity similar to those of the young adults. The scores for males and females were not significantly different. Examination of the range of the scores in each age group highlights the possible level that ankle complex movement proprioceptive rehabilitation can reach, especially for those 75–90 years of age.  相似文献   

6.
In this study, changes in skiing performance and poling kinetics during a simulated cross-country sprint skiing competition were investigated. Twelve elite male cross-country skiers performed simulated sprint competition (4 × 1,150 m heat with 20 min recovery between the heats) using the double-poling technique. Vertical and horizontal pole forces and cycle characteristics were measured using a force plate system (20-m long) during the starting spurt, racing speed, and finishing spurt of each heat. Moreover, heat and 20-m phase velocities were determined. Vertical and horizontal pole impulses as well as mean cycle length were calculated. The velocities of heats decreased by 2.7 ± 1.7% (p = 0.003) over the simulated competition. The 20-m spurting velocity decreased by 16 ± 5% (p < 0.002) and poling time increased by 18 ± 9% (p < 0.003) in spurt phases within heats. Vertical and horizontal poling impulses did not change significantly during the simulation; however, the mean forces decreased (p < 0.039) (vertical by 24 ± 11% and horizontal by 20 ± 10%) within heats but not between the heats. Decreased heat velocities over the simulated sprint and spurting velocities within heats indicated fatigue among the skiers. Fatigue was also manifested by decreased pole force production and increased poling time.  相似文献   

7.
PurposeThis study aimed to compare biomechanical aspects of a novel “running” diagonal stride (DSRUN) with “conventional” diagonal stride (DSCONV) skiing techniques performed at high speed.MethodsTen elite Italian male junior cross-country skiers skied on a treadmill at 10 km/h and at a 10° incline utilizing both variants of the diagonal stride technique. The 3-dimensional kinematics of the body, poles, and roller skis; the force exerted through the poles and foot plantar surfaces; and the angular motion of the leg joints were determined.ResultsCompared to DSCONV, DSRUN demonstrated shorter cycle times (1.05 ± 0.05 s vs. 0.75 ± 0.03 s (mean ± SD), p < 0.001) due to a shorter rolling phase (0.40 ± 0.04 s vs. 0.09 ± 0.04 s, p < 0.001); greater force applied perpendicularly to the roller skis when they had stopped rolling forward (413 ± 190 N vs. 890 ± 170 N, p < 0.001), with peak force being attained earlier; prolonged knee extension, with a greater range of motion during the roller ski-stop phase (28° ± 4° vs. 16° ± 3°, p = 0.00014); and more pronounced hip and knee flexion during most of the forward leg swing. The mechanical work performed against friction during rolling was significantly less with DSRUN than with DSCONV (0.04 ± 0.01 J/m/kg vs. 0.10 ± 0.02 J/m/kg, p < 0.001).ConclusionOur findings demonstrate that DSRUN is characterize by more rapid propulsion, earlier leg extension, and a greater range of motion of knee joint extension than DSCONV. Further investigations, preferably on snow, should reveal whether DSRUN results in higher acceleration and/or higher peak speed.  相似文献   

8.
Abstract

This study investigated the effects of upper-body repeated-sprint training in hypoxia vs. in normoxia on world-level male rugby union players’ repeated-sprint ability (RSA) during an international competition period. Thirty-six players belonging to an international rugby union male national team performed over a 2-week period four sessions of double poling repeated-sprints (consisting of 3 × eight 10-s sprints with 20-s passive recovery) either in normobaric hypoxia (RSH, simulated altitude 3000 m, n?=?18) or in normoxia (RSN, 300 m; n?=?18). At pre- and post-training intervention, RSA was evaluated using a double-poling repeated-sprint test (6 × 10-s maximal sprint with 20-s passive recovery) performed in normoxia. Significant interaction effects (P?<?0.05) between condition and time were found for RSA-related parameters. Compared to Pre-, peak power significantly improved at post- in RSH (423?±?52 vs. 465?±?69 W, P?=?0.002, η²=0.12) but not in RSN (395?±?65 vs. 397?±?57 W). Averaged mean power was also significantly enhanced from pre- to post-intervention in RSH (351?±?41 vs. 388?±?53 W, P?<?0.001, η²=0.15), while it remained unchanged in RSN (327?±?49 vs. 327?±?43 W). No significant change in sprint decrement (P?=?0.151, η²?=?0.02) was observed in RSH (?17?±?2% vs. ?16?±?3%) nor RSN (?17?±?2% vs. ?18?±?4%). This study showed that only four upper-body RSH sessions were beneficial in enhancing repeated power production in international rugby union players. Although the improvement from RSA to game behaviour remains unclear, this finding appears of practical relevance since only a short preparation window is available prior to international games.  相似文献   

9.
Purpose: The purpose of this study was to examine differences in heart rate recovery (HRRec) and oxygen consumption recovery (VO2 recovery) between young healthy-weight children and children with obesity following a maximal volitional graded exercise test (GXTmax). Method: Twenty healthy-weight children and 13 children with obesity completed body composition testing and performed a GXTmax. Immediately after the GXTmax, HRRec and VO2 recovery were measured each minute for 5 consecutive minutes. Results: There were no statistically significant group differences in HRRec for the 5 min following maximal exercise, Wilks’s Lambda = .885, F(4, 28) = 0.911, p = .471, between the healthy-weight children and children with obesity despite statistically significant differences in body fat percentage (BF%; healthy-weight children, 18.5 ± 6.1%; children with obesity, 41.1 ± 6.9%, p < .001) and aerobic capacity relative to body mass (VO2 peak; healthy-weight children, 46.8 ± 8.2 mL/kg/min; children with obesity, 31.9 ± 4.7 mL/kg/min, p < .001). There were statistically significant differences in VO2 recovery for the 5 min following exercise, Wilks’s Lambda = .676, F(4, 26) = 3.117, p = .032. There were no statistically significant correlations between HRRec and body mass index (BMI), BF%, VO2peak, or physical activity. Conclusions: In a healthy pediatric population, obesity alone does not seem to significantly impact HRRec, and because HRRec was not related to obesity status, BMI, or BF%, it should not be used as the sole indicator of aerobic capacity or health status in children. Using more than one recovery variable (i.e., HRRec and VO2 recovery) may provide greater insight into cardiorespiratory fitness in this population.  相似文献   

10.
ABSTRACT

Introduction: High-Intensity Interval Training (HIIT) and Constant-Intensity Endurance Training (CIET) improves peak oxygen uptake (V?O2) similarly in adults; but in children this remains unclear, as does the influence of maturity. Methods: Thirty-seven boys formed three groups: HIIT (football; n = 14; 14.3 ± 3.1 years), CIET (distance runners; n = 12; 13.1 ± 2.5 years) and a control (CON) group (n = 11; 13.7 ± 3.2 years). Peak V?O2 and gas exchange threshold (GET) were determined from a ramp test and anaerobic performance using a 30 m sprint pre-and-post a three-month training cycle. Results: The HIIT groups peak V?O2 was significantly higher than the CON group pre (peak V?O2: 2.54 ± 0.63 l·min-1 vs 2.03 ± 0.53 l·min-1, d = 0.88; GET: 1.41 ± 0.26 l·min-1 vs 1.13 ± 0.29 l·min-1, d = 1.02) and post-training (peak V?O2: 2.63 ± 0.73 l·min-1 vs 2.08 ± 0.64 l·min-1, d = 0.80; GET: 1.32 ± 0.33 l·min-1 vs 1.15 ± 0.38 l·min-1, d = 0.48). All groups showed a similar magnitude of change during the training (p > 0.05). Conclusion: HIIT was not superior to CIET for improving aerobic or anaerobic parameters in adolescents. Secondly, pre- and post-pubertal participants demonstrated similar trainability.  相似文献   

11.
Abstract

It is well established that regular exercise can reduce the risk of cardiovascular disease, although the most time-efficient exercise protocol to confer benefits has yet to be established. The aim of the current study was to determine the effects of short-duration sprint interval exercise on postprandial triacylglycerol. Fifteen healthy male participants completed two 2 day trials. On day 1, participants rested (control) or carried out twenty 6 s sprints, interspersed with 24 s recovery (sprint interval exercise – 14 min for total exercise session). On day 2, participants consumed a high-fat meal for breakfast with blood samples collected at baseline, 2 h and 4 h. Gas exchange was also measured at these time points. On day 2 of control and sprint interval exercise trials, there were no differences (P < 0.05) between trials in plasma glucose, triacylglycerol, insulin or respiratory exchange ratio (RER). The area under the curve for plasma triacylglycerol was 7.67 ± 2.37 mmol · l–1.4 h–1 in the control trial and 7.26 ± 2.49 mmol · l–1.4 h–1 in the sprint interval exercise trial. Although the sprint exercise protocol employed had no significant effect on postprandial triacylglycerol, there was a clear variability in responses that warrants further investigation.  相似文献   

12.
ABSTRACT

The effects of acute ingestion of nitrate on short-duration repeated sprint performance (RSP) are unclear. This study investigated the effect of acute ingestion of beetroot juice on a test of RSP in team sport athletes. Sixteen male team sport athletes undertook four trials using a 40 m maximum shuttle run test (MST), which incorporates 10 × 40 m shuttle sprints with 30 s between the start of each sprint. Two familiarisation trials, followed by nitrate-rich beetroot juice (BR; ~6 mmol nitrate) and nitrate-depleted beetroot juice (PLA; ~0.0034 mmol nitrate) trials were completed in a randomised, double-blind manner. Ingestion of beetroot juice 3 h prior to exercise elevated plasma nitrate concentrations ~6-fold in BR (BR, 413 ± 56 μM; PLA, 69 ± 30 μM; P < 0.001). RSP, assessed by sprint performance decrement (Sdec; %), did not differ (P = 0.337) between BR (5.31 ± 2.49%) and PLA (5.71 ± 2.61%). There was no difference between trials for total sprint time (P = 0.806), fastest sprint (P = 0.341), slowest sprint (P = 0.787), or post-exercise blood lactate concentration (BR, 11.8 ± 2.5 mM; PLA, 12.2 ± 2.3 mM; P = 0.109). Therefore, acute ingestion of beetroot juice did not improve a test of short-duration RSP in team sport athletes.  相似文献   

13.
ABSTRACT

This study aimed to compare mechanical variables derived from torque-cadence and power-cadence profiles established from different cycle ergometer modes (isoinertial and isokinetic) and modelling procedures (second- and third-order polynomials), whilst employing a novel method to validate the theoretical maximal power output (Pmax). Nineteen well-trained cyclists (n = 12 males) completed two experimental sessions comprising six, 6-s maximal isoinertial or isokinetic cycling sprints. Maximal pedal strokes were extracted to construct power–cadence relationships using second- and third-order polynomials. A 6-s sprint at the optimal cadence (Fopt) or optimal resistance (Topt) was performed to assess construct validity of Pmax. No differences were found in the mechanical parameters when derived from isokinetic (Pmax = 1311 ± 415, Fopt = 118 ± 12) or isoinertial modes (Pmax = 1320 ± 421, Fopt = 116 ± 19). However, R2 improved (P < 0.02) when derived from isoinertial sprints. Third-order polynomial modelling improved goodness of fit values (Standard Error, adjusted R2), but derived similar mechanical parameters. Finally, peak power output during the optimised sprint did not significantly differ from the theoretical Pmax in both cycling modes, thus providing construct validity. The most accurate P-C profile can be derived from isoinertial cycling sprints, modelled using third-order polynomial equations.  相似文献   

14.
Abstract

Studies have reported the benefits of pre-cooling prior to exercise in the heat for male athletes, but at this time no research has investigated female athletes. The aim of the following study was to test the effects of pre-cooling on female repeat sprint performance in hot, humid conditions; namely is ice ingestion effective in reducing core temperature (Tc) and does this reduced Tc lead to improved repeat sprint performance in female athletes? Nine female team sport athletes with mean age (21.0 ± 1.2 y), height (169.8 ± 4.1 cm) and body mass (62.3 ± 5.0 kg) participated in this study. Participants completed 72 min of an intermittent sprint protocol (ISP) consisting of 2 × 36 min halves in hot, humid conditions (33.1 ± 0.1°C, 60.3 ± 1.5% RH) on a cycle ergometer. This was preceded by 30 min of either ice ingestion (ICE) or water consumption (CON) in a randomised order. At the end of the pre-cooling period, Tc significantly decreased following ICE (?0.7 ± 0.3°C) compared to CON (?0.1 ± 0.2°C; p = 0.001). Tc also remained lower in ICE compared to CON during the ISP (p = 0.001). Ratings of perceived thermal sensation were lower in ICE compared to CON (p = 0.032) at the beginning (p = 0.022) and mid-point (p = 0.035) of the second half. No differences in work, mean power, peak power, rating of perceived exertion, heart rate or sweat loss between conditions were recorded (p > 0.05). Ice ingestion significantly reduced female Tc prior to intermittent exercise in the heat and reduced thermal sensation; however, this did not coincide with improved performance.  相似文献   

15.
Purpose:This study aimed to determine the accuracy of a 4 split time modelling method to generate velocity-time and velocity-distance variables in elite male 100-m sprinters and subsequently to assess the roles of key sprint parameters with respect to 100-m sprint performance.Additionally,this study aimed to assess the differences between faster and slower sprinters in key sprint variables that have not been assessed in previous work.Methods:Velocity-time and velocity-distance curves were generated using a mono-exponential function from 4 split times for 82 male sprinters during major athletics competitions.Key race variables-maximum velocity,the acceleration time constant(τ),and percentage of velocity lost(vLoss)-were derived for each athlete.Athletes were divided into tertiles,based on 100-m time,with the first and third tertiles considered to be the faster and slower groups,respectively,to facilitate further analysis.Results:Modelled split times and velocities displayed excellent accuracy and close agreement with raw measures(range of mean bias was-0.2%to 0.2%,and range of intraclass correlation coefficients(ICCs)was 0.935 to 0.999)except for 10-m time(mean bias was 1.6%±1.3%,and the ICC was 0.600).The 100-m sprint performance time and all 20-m split times had a significant near-perfect negative correlation with maximum velocity(r≥-0.90)except for the 0 to 20-m split time,where a significantly large negative correlation was found(r=-0.57).The faster group had a significantly higher maximum velocity andτ(p<0.001),and no significant difference was found for vLoss(p=0.085).Conclusion:Coaches and researchers are encouraged to utilize the 4 split time method proposed in the current study to assess several key race variables that describe a sprinter’s performance capacities,which can be subsequently used to further inform training.  相似文献   

16.
This investigation examined the oxidative stress (F2-Isoprostane; F2-IsoP) and inflammatory (interleukin-6; IL-6) responses to repeat-sprint training in hypoxia (RSH). Ten trained male team sport athletes performed 3(sets)*9(repetitions)*5?s cycling sprints in simulated altitude (3000?m) and sea-level conditions. Mean and peak sprint power output (MPO and PPO) were recorded, and blood samples were collected pre-exercise, and again at 8 and 60?min post-exercise. Both MPO and PPO were significantly reduced in hypoxia (compared to sea-level) in the second (MPO: 855?±?89 vs. 739?±?95?W, p?=?.006; PPO: 1024?±?114 vs. 895?±?112?W, p?=?.010) and third (MPO: 819?±?105 vs. 686?±?83?W, p?=?.008; PPO: 985?±?125 vs. 834?±?99?W, p?=?.008) sets, respectively. IL-6 was significantly increased from pre- to 1?h post-exercise in both hypoxia (0.7?±?0.2 vs. 2.4?±?1.4?pg/mL, p?=?.004) and sea-level conditions (0.7?±?0.2 vs. 1.6?±?0.3?pg/mL, p?d?=?0.80) suggesting higher IL-6 levels of post-hypoxia. F2-IsoP was significantly lower 1?h post-exercise in both the hypoxic (p?=?.005) and sea-level (p?=?.002) conditions, with no differences between trials. While hypoxia can impact on exercise intensity and may result in greater post-exercise inflammation, it appears to have little effect on oxidative stress. These results indicate that team sport organisations with ready access to hypoxic training facilities could confidently administer RSH without significantly increasing the post-exercise inflammatory or oxidative stress response.  相似文献   

17.
Ratings of perceived exertion (RPE: 0–10) during resistance training with varying programming demands were examined. Blood lactate (BLa) and muscle activation (using surface electromyography: EMG) were measured as potential mediators of RPE responses. Participants performed three sets of single arm (preferred side) bicep curls at 70% of 1 repetition maximum over 4 trials: Trial (A) 3 sets?×?8 repetitions?×?120?s recovery between sets; (B) 3 sets?×?8 repetitions?×?240?s recovery; (C) 3 sets?×?maximum number of repetitions (MNR)?×?120?s recovery; (D) 3 sets?×?MNR?×?240?s recovery. Overall body (RPE-O) and active muscle (RPE-AM) perceptual responses were assessed following each set in each trial. Biceps brachii and brachioradialis muscle EMG was measured during each set for each trial. RPE-O and RPE-AM were not different between Trial A (3.5?±?1 and 6?±?1, respectively) and Trial B (3.5?±?1 and 5.5?±?1, respectively) (p?p?相似文献   

18.
Abstract

Six games players (GP) and six endurance‐trained runners (ET) completed a standardized multiple sprint test on a non‐motorized treadmill consisting often 6‐s all‐out sprints with 30‐s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 ± 114 vs 777 ± 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 ± 0.3 vs 6.71 ± 0.3 m s‐1, N.S.), but had a greater decrement in mean power output than endurance‐trained runners (GP vs ET: 29.3 ± 8.1% vs 14.2 ± 11.1%, P < 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 ± 1.9 vs 12.4 ± 1.7 mM, P < 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 ± 0.08 vs 0.28 ± 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P < 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P<0.01). The average increase in oxygen uptake above pre‐exercise levels during the sprint test was greater for endurance‐trained athletes than for the games players (ET vs GP: 35.0 ± 2.2 vs 29.6 ± 3.0 ml kg‐1 min‐1 , P < 0.05), corresponding to an average oxygen uptake per sprint (6‐s sprint and 24 s of subsequent recovery) of 67.5 ± 2.9% and 63.0 ± 4.5% VO 2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre‐exercise values during the sprint test and mean speed fatigue (r = ‐0.68, P < 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

19.
Abstract

The purpose of the present study was to establish the most appropriate allometric model to predict mean skiing speed during a double-poling roller skiing time-trial using scaling of upper-body power output. Forty-five Swedish junior cross-country skiers (27 men and 18 women) of national and international standard were examined. The skiers, who had a body mass (m) of 69.3 ± 8.0 kg (mean ± s), completed a 120-s double-poling test on a ski ergometer to determine their mean upper-body power output (W). Performance data were subsequently obtained from a 2-km time-trial, using the double-poling technique, to establish mean roller skiing speed. A proportional allometric model was used to predict skiing speed. The optimal model was found to be: Skiing speed = 1.057 · W 0.556 · m ?0.315, which explained 58.8% of the variance in mean skiing speed (P < 0.001). The 95% confidence intervals for the scaling factors ranged from 0.391 to 0.721 for W and from ?0.626 to ?0.004 for m. The results in this study suggest that allometric scaling of upper-body power output is preferable for the prediction of performance of junior cross-country skiers rather than absolute expression or simple ratio-standard scaling of upper-body power output.  相似文献   

20.
ABSTRACT

Anaerobic performance in youth has received little attention partly due to the lack of a “gold-standard” measurement. However, force-velocity-power (F-v-P) profiling recently showed high reliability and validity in trained adults. Therefore, the aim was to determine the reliability of F-v-P profiling in children and adolescents. Seventy-five children (60 boys, 15 girls; age: 14.1 ± 2.6 years) completed three 30 m sprints. Velocity was measured at 46.875 Hz using a radar device. The F-v-P profile was fitted to a velocity-time curve allowing instantaneous power variables to be calculated. Reliability was assessed using the intra-class correlation coefficient (ICC), coefficient of variation (CV), standard error of measurement (SEM) and smallest worthwhile change (SWC). High reliability was evident for absolute peak (Ppeak) and mean power (Pmean), Ppeak and Pmean expressed relative to body mass, peak and mean velocity, 30 m sprint time, peak horizontal force (F0), relative F0, mechanical efficiency index and fatigue rate (ICC: 0.75–0.88; CV: 1.9–9.4%) with time to peak power demonstrating moderate reliability (ICC: 0.50; CV: 9.5%). The F-v-P model demonstrated at least moderate reliability for all variables. This therefore provides a potential alternative for paediatric researchers assessing sprint performance and the underlying kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号