首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

2.
This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov–Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

3.
This paper investigates the finite-time stabilization for a class of upper-triangular switched nonlinear systems, where nonlinearities are allowed to be lower-order growing. Due to the special structure of the considered system, the presented methods for lower-triangular switched nonlinear systems in the literature can not be directly utilized. To solve the problem, a state feedback control law with a new structure is designed to guarantee the global finite-time stability of the closed-loop system under arbitrary switching signals by using the recursive design approach and the nested saturation method. A simulation example is provided to show the effectiveness of the proposed method.  相似文献   

4.
The problem of adaptive global finite-time stabilization control for a class of nonlinear switched systems in the presence of external perturbations and arbitrary switchings has been addressed in this research study. The proposed scheme has been designed based on a finite-time estimation technique in which during the control procedure, unknown imposed perturbations are accurately estimated by means of the designed finite-time disturbance observer (FTDO). Due to the exact estimation of the external disturbances within a given finite time, the encountered complications and adversities from loss of information in the Lyapunov parameter estimation (LPE) methods have been solved which are caused by the persistent switchings in the system. Furthermore, a new solution for the problem of chattering phenomenon in nonlinear switched systems has been presented by utilizing the designed FTDO, which can counteract the malfunctioning responses of the system caused by external disturbances and unmodeled dynamics. In this paper, an acknowledged class of nonlinear switched systems has been taken into account which is in the general form of canonical structure. In addition, the established design strategy is formulated for the control of perturbed nonlinear switched systems with one and only input and assures that the system states through the finite-time convergence characteristic, reach the equilibrium point of origin. Finally, numerical simulations are carried out on a mass-spring-damper (MSD) dynamical system to indicate advantages and superior efficiency of the suggested method.  相似文献   

5.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

6.
7.
This paper deals with the problem of stabilization for a class of hybrid systems with time-varying delays. The system to be considered is with nonlinear perturbation and the delay is time varying in both the state and control. Using an improved Lyapunov–Krasovskii functional combined with Newton–Leibniz formula, a memoryless switched controller design for exponential stabilization of switched systems is proposed. The conditions for the exponential stabilization are presented in terms of the solution of matrix Riccati equations, which allow for an arbitrary prescribed stability degree.  相似文献   

8.
The stability issue of discrete-time switched systems governed by cyclic switching laws is discussed in this paper. By establishing inverse-timer-based multiple Lyapunov functions (ITBMLFs), which are less conservative than traditional MLFs, limitations of the existing findings on discrete-time cyclic switched systems (DTCSSs) are well relaxed. Furthermore, from the perspective of computational complexity adjustment, the proposed ITBMLFs are confirmed to be more flexible than the previous ones, which is especially meaningful for the DTCSSs consisting of a large number of subsystems. Based on the cycle-dependent average dwell time (CD-ADT) concept and the ITBMLF approach, newly enhanced stability conditions are launched for DTCSSs where subsystems can be entirely or partially stable, or even completely unstable. Moreover, robust stability of DTCSSs can be achieved when norm-bounded and time-varying parameter uncertainties (NBTVPUs) are taken into account. Finally, the effectiveness and superiority of the proposed technologies are expounded through numerical examples.  相似文献   

9.
In this paper, we investigate the incremental H performance problem for a class of stochastic switched nonlinear systems by using a state-dependent switching law and the maximum and minimum dwell time approach. By resorting to the state-dependent switching law, some sufficient conditions are provided to cope with the incremental H performance problem, which can be applied even if all subsystems are unstable. Then, based on the maximum and minimum dwell time scheme, the incremental H performance problem to be solvable is derived for two cases: one is all subsystems are incrementally globally asymptotically stable in the mean(IGASiM), another is both IGASiM subsystems and unstable subsystems coexist. When all subsystems are IGASiM, the stochastic switched nonlinear system is IGASiM and possesses a incremental L2-gain under given conditions. When both IGASiM subsystems and unstable subsystems coexist, if the activation time ratio between IGASiM subsystems and unstable ones is not less than a specified constant, the sufficient conditions for the incremental H performance of the stochastic switched nonlinear system are given. Two numerical examples are given to illustrate the validity of methods proposed.  相似文献   

10.
In this paper, a new framework of the robust adaptive neural control for nonlinear switched stochastic systems is established in the presence of external disturbances and system uncertainties. In the existing works, the design of robust adaptive control laws for nonlinear switched systems mainly relies on the average dwell time method, while the design and analysis based on the model-dependent average dwell time (MDADT) method remains a challenge. An improved MDADT method is developed for the first time, which greatly relaxes the requirements of Lyapunov functions of any two subsystems. Benefiting from the improved MDADT, a switched disturbance observer for discontinuous disturbances is proposed, which realizes the real-time gain adjustment. For known and unknown piecewise continuous nonlinear functions, a processing method based on the tracking differentiator and the neural network is proposed, which skillfully guarantees the continuity of the control law. The theoretical proof shows that the semiglobal uniform ultimate boundedness of all closed-loop signals can be guaranteed under switching signals with MDADT property, and simulation results of the longitudinal maneuvering control at high angle of attack are given to further illustrate the effectiveness of the proposed framework.  相似文献   

11.
This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems. The distinguishing feature of the proposed method is that the stability of all subsystems of the error switched systems is not necessarily required. First, an output derivative-based method and time-varying coordinate transformation are considered to eliminate the unknown input. Then in order to maintain a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov functions combined with convex combination technique. In addition, the time-varying Lyapunov functions method is also used to analyze the stability of a class of error switched nonlinear systems with stable subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

12.
This paper investigates the output regulation problem for a class of switched nonlinear systems with at least a feedback incrementally passive subsystem via average dwell time method. First, the output regulation problem for switched nonlinear system via full information feedback is solved. The stabilizing controllers consist of the state feedback controllers and linear output feedback controllers. In some particular cases, it is unnecessary to verify that all the solutions of the switched nonlinear system converge to the bounded steady-state solution, while we only have to verify the regulated outputs converge to zero directly. Second, a dynamic error-feedback stabilizer for each subsystem and a switched internal model whose subsystems all are incrementally passive are designed to solve the output regulation problem for the switched nonlinear system under a composite switching signal with average dwell times. The stabilizer and the internal model are interconnected in a more simple way and allowed to switch asynchronously. Finally, two examples are provided to show the effectiveness of the obtained results.  相似文献   

13.
In this paper, the problem of stabilization for a class of switched delay systems with polytopic type uncertainties under asynchronous switching is investigated. When the switching of the controllers has a lag to the switching of subsystems, i.e. the switching signal of the switched controller involves delay, parameter-dependent Lyapunov functionals are constructed, which are allowed to increase during the running time of active subsystems with the mismatched controller. Based on the average dwell time method, sufficient conditions for exponential stability are developed for a class of switching signals. Finally, a river pollution control problem is given to demonstrate the feasibility and effectiveness of the proposed design techniques.  相似文献   

14.
This paper is concerned with the exponential stabilization of switched linear systems subject to actuator saturation with both stabilizable subsystems and unstabilizable subsystems for continuous-time case and discrete-time case, respectively. Sufficient conditions for the exponential stabilization under dwell time switching under the cases of continuous-time and discrete-time are established by using a novel class of multiple time-varying Lyapunov function. The existence conditions for stabilizing controllers are presented in terms of linear matrix inequalities (LMIs) for the continuous-time case and the discrete-time case, respectively. Two optimization problems are proposed for obtaining the maximal attraction region. The problem of exponential stabilization for switched system subject to actuator saturation with asynchronous switching controller is also studied. Several numerical examples are presented to prove the validity of the obtained results.  相似文献   

15.
This paper investigates the stability and stabilization of switched linear singular systems with state reset at switching instants. Based on the dynamics decomposition of singular subsystems, a sufficient stability condition for the system with the given state reset is obtained. Then, the stabilization problem by state reset is investigated and an algorithm for computing the reset matrices is presented. The obtained results extend some previous works on both singular switched systems and reset control for normal switched systems. Finally, a numerical example is presented to illustrate the effectiveness of the proposed approach.  相似文献   

16.
This paper concerns the simultaneous fault detection and control (SFDC) problem for a class of nonlinear stochastic switched systems with time-varying state delay and parameter uncertainties. The switching signal of detector/controller unit (DCU) is assumed to be with switching delay, which results in the asynchronous switching between the subsystems and DCU. By constructing a switching strategy depending on the state and switching delays, new sufficient conditions expressed by a set of linear matrix inequalities (LMIs) is derived to design DCU gains. This problem is formulated as an H optimization problem and both mean square exponential stability and fault detection of augmented system are considered. A numerical example is finally exploited to verify the effectiveness and potential of the achieved scheme.  相似文献   

17.
The stability for discrete nonlinear switched singular systems with unstable subsystems is investigated. First, by constructing an appropriate multiple discontinuous Lyapunov function, and utilizing the characteristics of mode-dependent average dwell time switching signals, new stability results for nonlinear switched singular system are established. Then, we adopt the T-S fuzzy modeling method to approximate the nonlinear switched singular systems and get general stability conditions in forms of linear matrix inequalities. Compared to the current results, our technique is more flexible and we also get tighter dwell time boundaries. Furthermore, a numerical example demonstrates the effectiveness of the proposed method.  相似文献   

18.
We study the input-to-state stability (ISS) of switched nonlinear input delay systems under asynchronous switching. Our results apply to cases where some subsystems of the switched systems are not necessarily stable under the influence of input delay. By making a compromise among the matched-stable period, the matched-unstable period, and the unmatched period and allowing the increase of the Lyapunov–Krasovskii functional (LKF) on all the switching times, the extended stability criteria for switched delay systems in generally nonlinear setting are derived first. Then, we focus on switched nonlinear input delay systems where the presence of the input delay leads to the instability of some subsystems of it. By explicitly constructing input-to-state stable LKF, the sufficient conditions for ISS of switched nonlinear input delay systems under asynchronous switching are presented. Finally, two examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

19.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

20.
Finite-time stability concerns the boundness of system during a fixed finite-time interval. For switched systems, finite-time stability property can be affected significantly by switching behavior; however, it was neglected by most previous research. In this paper, the problems of finite-time stability analysis and stabilization for switched nonlinear discrete-time systems are addressed. First, sufficient conditions are given to ensure a class of switched nonlinear discrete-time system subjected to norm bounded disturbance finite-time bounded under arbitrary switching, and then the results are extended to H finite-time boundness of switched nonlinear discrete-time systems. Finally based on the results on finite-time boundness, the state feedback controller is designed to H finite-time stabilize a switched nonlinear discrete-time system. A numerical design example is given to illustrate the proposed results within this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号