首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min(-1)), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s(-1)) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s(-1)) (Cohen's d: 3.80 nM · s(-1)), whereas the increase from baseline in deoxygenated haemoglobin (by ~17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ~5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.  相似文献   

2.
The purpose of the current study was to examine the effect of 6 weeks of whole body vibration training (WBVT) on body composition, muscle activity of the gastrocnemius and vastus lateralis, gastrocnemius muscle architecture (static and dynamic) and ground reaction forces (performance jump) during the take-off phase of a countermovement jump in young healthy adult males. A total of 33 men (23.31 ± 5.62 years) were randomly assigned to a whole body vibration group (experimental group, EGWBVT: n = 17; 22.11 ± 4.97 years) or a control group (CG: n = 16; 24.5 ± 6.27 years). The total duration of the intervention phase (WBVT) was 6 weeks with a frequency of 3 sessions per week. Statistically significant differences were observed (P ≤ 0.05) between pre- and post-test in the power peak (Δ 1.91 W · kg?1; P = 0.001), take-off velocity (0.1 cm · s?1; P = 0.002) and jump height (Δ 0.4 cm; P = 0.002) for EGWBVT. There were no statistically significant differences in any of the body composition and muscle architecture variables. Moreover, no significant differences were found between EGWBVT and CG nor changes in muscle activity during take-off phase of the gastrocnemius and vastus lateralis pre- versus post-training. This study suggests that a 6-week WBVT programme with increasing intensity improves jump performance but does not alter muscle activity nor muscle architecture in healthy young men.  相似文献   

3.
The purpose of the present study was to compare acute changes in oxidative stress and inflammation in response to steady state and low volume, high intensity interval exercise (LV-HIIE). Untrained healthy males (n = 10, mean ± s: age 22 ± 3 years; VO2MAX 42.7 ± 5.0 ml · kg?1 · min?1) undertook three exercise bouts: a bout of LV-HIIE (10 × 1 min 90% VO2MAX intervals) and two energy-matched steady-state cycling bouts at a moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensity on separate days. Markers of oxidative stress, inflammation and physiological stress were assessed before, at the end of exercise and 30 min post-exercise (post+30). At the end of all exercise bouts, significant changes in lipid hydroperoxides (LOOH) and protein carbonyls (PCs) (LOOH (nM): MOD +0.36; HIGH +3.09; LV-HIIE +5.51 and PC (nmol · mg?1 protein): MOD ?0.24; HIGH ?0.11; LV-HIIE ?0.37) were observed. Total antioxidant capacity (TAC) increased post+30, relative to the end of all exercise bouts (TAC (µM): MOD +189; HIGH +135; LV-HIIE +102). Interleukin (IL)-6 and IL-10 increased post+30 in HIGH and LV-HIIE only (P < 0.05). HIGH caused the greatest lymphocytosis, adrenaline and cardiovascular response (P < 0.05). At a reduced energy cost and physiological stress, LV-HIIE elicited similar cytokine and oxidative stress responses to HIGH.  相似文献   

4.
Abstract

The aim of this study was to determine if inducing metabolic alkalosis would alter neuromuscular control after 50 min of standardized submaximal cycling. Eight trained male cyclists (mean age 32 years, s = 7; [Vdot]O2max 62 ml · kg?1 · min?1, s = 8) ingested capsules containing either CaCO3 (placebo) or NaHCO3 (0.3 g · kg?1 body mass) in eight doses over 2 h on two separate occasions, commencing 3 h before exercise. Participants performed three maximal isometric voluntary contractions (MVC) of the knee extensors while determining the central activation ratio by superimposing electrical stimulation both pre-ingestion and post-exercise, followed by a 50-s sustained maximal contraction in which force, EMG amplitude, and muscle fibre conduction velocity were assessed. Plasma pH, blood base excess, and plasma HCO3 were higher (P < 0.01) during the NaHCO3 trial. After cycling, muscle fibre conduction velocity was higher (P < 0.05) during the 50-s sustained maximal contraction with NaHCO3 than with placebo (5.1 m · s?1, s = 0.4 vs. 4.2 m · s?1, s = 0.4) while the EMG amplitude remained the same. Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.  相似文献   

5.
Reproducibility of frequency content from surface electromyography (sEMG) signals has not been assessed and it is unknown if incremental load testing design could affect sEMG in cycling. The goals of this study were to assess the reproducibility of measures from sEMG frequency content between sessions and to compare these frequency components between a ramp and a step incremental cycling test. Eighteen cyclists performed four incremental load cycling tests to exhaustion. Two tests were performed using a step increment (load started at 100 W for 3 min followed by increments of 30 W every 3 min) and two were performed using a ramp increment (load started at 100 W for 1 min followed by increments of 30 W·min?1). sEMG was monitored bilaterally for the rectus femoris and vastus lateralis throughout the tests and converted into overall activation (whole signal bandwidth), high- and low-frequency contents. The reproducibility of the frequency content ranged from none to strong (ICC = 0.07–0.90). Vastus lateralis activation was larger at the step compared to the ramp test (P < 0.01), without differences for rectus femoris (P = 0.22–0.91) and for the high-frequency (P = 0.28–0.95) and low-frequency contents (P = 0.13–0.94). sEMG from vastus lateralis and rectus femoris presented none to strong reproducibility. Vastus lateralis is more activated in step test design.  相似文献   

6.
The aim of this study was to compare the effects of 11 weeks of low-volume resistance training (LVRT) and high-volume resistance training (HVRT) on muscle strength, muscle thickness (MT), and postprandial lipaemia (PPL) in postmenopausal women. Thirty-six healthy and untrained postmenopausal women (age, 58.9 ± 5.8 years; 68.6 ± 10.3 kg; and BMI, 26.9 ± 4.8 kg · m?2) participated in resistance training 3× per week for 11 weeks (HVRT = 12; LVRT = 13; and control group = 11). Biochemical variables, both pretraining and post-training, were evaluated 16 h after the administration of an oral fat tolerance test (OFTT) and metabolic variable during [energy expenditure (EE)] and after training session [excess postexercise oxygen consumption (EPOC)]. Muscle strength (1 RM) and MT were also calculated, and no significant differences were observed between the groups for PPL (mmol · L?1 per 5 h) as measured by glucose, high-density lipoprotein, low-density lipoprotein, and total cholesterol. EE total (EE + EPOC; 6.12 ± 1.21 MJ vs. 2.26 ± 0.85 MJ), resting fat oxidation (5.52 ± 1.69 g · h?1 vs. 4.11 ± 1.12 g · h?1); MT (vastus medialis, 21.4 ± 1.8 mm vs. 18.4 ± 1.2 mm and vastus lateralis 22.3 ± 1.2 mm vs. 20.8 ± 1.3 mm); triacylglycerol (TAG) 0, 1, 2, 4; and 5 h after OFTT, TAG area under the curve (AUC) (5.79 ± 0.42 vs. 7.78 ± 0.68), and incremental AUC (?46.21 ± 14.42% vs. 7.78 ± 4.68%) were all significantly different post-training for HVRT versus LVRT, respectively (P < 0.05). The results of this investigation suggest that HVRT reduces PPL in postmenopausal women.  相似文献   

7.
Abstract

Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 ± 20 cm H2O and 6.3 ± 1.4 litres · s?1 to 100 ± 22 cm H2O and 4.9 ± 1.5 litres · s?1 respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

8.
The purpose of this study was to examine the influence of a carbohydrate-rich meal on post-prandial metabolic responses and skeletal muscle glycogen concentration. After an overnight fast, eight male recreational/club endurance runners ingested a carbohydrate (CHO) meal (2.5 g CHO?·?kg?1 body mass) and biopsies were obtained from the vastus lateralis muscle before and 3 h after the meal. Ingestion of the meal resulted in a 10.6?±?2.5% (P?<?0.05) increase in muscle glycogen concentration (pre-meal vs post-meal: 314.0?±?33.9 vs 347.3?±?31.3 mmol?·?kg?1 dry weight). Three hours after ingestion, mean serum insulin concentrations had not returned to pre-feeding values (0 min vs 180 min: 45?±?4 vs 143?±?21 pmol?·?l?1). On a separate occasion, six similar individuals ingested the meal or fasted for a further 3 h during which time expired air samples were collected to estimate the amount of carbohydrate oxidized over the 3 h post-prandial period. It was estimated that about 20% of the carbohydrate consumed was converted into muscle glycogen, and about 12 % was oxidized. We conclude that a meal providing 2.5 g CHO?·?kg?1 body mass can increase muscle glycogen stores 3 h after ingestion. However, an estimated 67% of the carbohydrate ingested was unaccounted for and this may have been stored as liver glycogen and/or still be in the gastrointestinal tract.  相似文献   

9.

Purpose: This study compared the relative peak torque and normalized electromyographic (EMG) mean frequency (MNF) responses during fatiguing isokinetic muscle actions for men versus women. Method: Twenty men (M age ± SD = 22 ± 2 years) and 20 women (M age ± SD = 22 ± 1 years) performed 50 maximal concentric isokinetic muscle actions of the leg extensors at a velocity of 180°/s while surface EMG signals were detected from the vastus lateralis, rectus femoris, and vastus medialis. The dependent variables were initial, final, and average peak torque; percent decline; the estimated percentage of fast-twitch fibers for the vastus lateralis; and the linear slope coefficients and y-intercepts for normalized EMG MNF versus repetition number. The data were analyzed with independent-samples t tests and 2-way mixed-factorial analyses of variance. Results: The mean initial, final, and average peak torque values for men were greater than those for women. There were no mean differences for percent decline and the estimated percentage of fast-twitch fibers for the vastus lateralis. There were also no sex differences for the linear slope coefficients, but there were differences among the muscles (vastus medialis>vastus lateralis>rectus femoris). The mean y-intercept for the vastus lateralis for men was greater than that for women. Conclusions: Men demonstrated greater peak torque values than those for women, but the declines in peak torque and normalized EMG MNF were similar between the sexes. The vastus medialis was more fatigue-resistant than both the vastus lateralis and rectus femoris.  相似文献   

10.
The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s?1 · mg?1 P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation.  相似文献   

11.
Impact is an important aspect of the kicking skill. This study examined foot and ball motion during impact and compared distance and accuracy punt kicks. Two-dimensional high-speed video (4000 Hz) captured data of the shank, foot and ball through impact of 11 elite performers kicking for maximal distance and towards a target 20 m in distance. Four phases were identified during impact, with an overall reduction in foot velocity of 5.0 m · s?1 (± 1.1 m · s?1) and increase in ball velocity of 22.7 m · s?1 (± 2.3 m · s?1) from the start to end of contact. Higher foot velocity was found in distance compared to accuracy kicks (22.1 ± 1.6 m · s?1 vs. 17.7 ± 0.9 m · s?1, P < 0.05), and was considered to produce the significant differences in all impact characteristics excluding foot-to-ball speed ratio. Ankle motion differed between the kicking tasks; distance kicks were characterised by greater rigidity compared to accuracy kicks evident by larger force (834 ± 107 N vs. 588 ± 64 N) and smaller change in ankle angle (2.2 ± 3.3° vs. 7.2 ± 6.4°). Greater rigidity was obtained by altering the position of the ankle at impact start; distance kicks were characterised by greater plantarflexion (130.1 ± 5.8° vs. 123.0 ± 7.9°, P < 0.05), indicating rigidity maybe actively controlled for specific tasks.  相似文献   

12.
Much of the training of competitive telemark skiers is performed as dry-land exercises. The specificity of these exercises is important for optimizing the training effect. Our aim here was to study the activation of the knee extensor musculature and knee angular displacement during competitive telemark skiing and during dry-land strength training exercises to determine the specificity of the latter. Specificity was analysed with respect to angular amplitude, angular velocity, muscle action and electromyographic (EMG) activity. Five male telemark skiers of national and international standard volunteered to participate in the study, which consisted of two parts: (1) skiing a telemark ski course and (2) specific dry-land strength training exercises for telemark skiing (telemark jumps and barbell squats). The angular displacement of the right knee joint was recorded with an electrogoniometer. A tape pressure sensor was used to measure pressure between the sole of the foot and the bottom of the right ski boot. Electromyographic activity in the right vastus lateralis was recorded with surface electrodes. The EMG activity recorded during maximum countermovement jumps was used to normalize the EMG activity during telemark skiing, telemark jumps and barbell squats. The results showed that knee angular displacement during telemark skiing and dry-land telemark jumps had four distinct phases: a flexion (F1) and extension (E1) phase during the thrust phase of the outside ski/leg in the turn/jump and a flexion (F2) and extension (E2) phase when the leg was on the inside of the turn/jump. The vastus lateralis muscle was activated during F1 and E1 in the thrust phase during telemark skiing and telemark jumps. The overall net knee angular amplitude was significantly greater (P<0.05) for telemark jumps than for telemark skiing. Barbell squats showed a knee angular amplitude significantly greater than that in telemark skiing (P<0.05). The mean knee angular velocity of the F1 and E1 phases during telemark skiing was about 0.47 rad?·?s?1; during barbell squats, it was about 1.22 rad?·?s?1. The angular velocity during telemark jumps was 2.34 and 1.59 rad?·?s?1 in the F1 and E1 phase, respectively. The normalized activation level of the EMG bursts during telemark skiing, telemark jumps and barbell squats was 70–80%. In conclusion, the muscle action and level of activation in the vastus lateralis during the F1 and E1 phases were similar during telemark skiing and dry-land exercises. However, the dry-land exercises showed a larger knee extension and flexion amplitude and angular velocity compared with telemark skiing. It appears that an adjustment of knee angular velocity during barbell squats and an adjustment of knee angle amplitude during both telemark jumps and barbell squats will improve specificity during training.  相似文献   

13.
ABSTRACT

The purpose of the present study was to compare the myosin heavy chain (MHC) isoform composition of the deltoid and vastus lateralis muscles of the dominant and non-dominant limbs in handball players. Eleven male Greek elite handball players (age 22.6 ± 1.9 yrs, training experience 10.6 ± 2.1 yrs, height 184.1 ± 4.1 cm, and weight 81.0 ± 12.5 kg) participated in the study. Four muscle biopsies were obtained from the dominant and non-dominant deltoid and vastus lateralis muscles during the in-season period. The MHC composition was determined using SDS-PAGE. No significant difference was found between the dominant and non-dominant muscles; Deltoid muscle: MHC I [(95%CI = ?1.22, 0.33), P = 0.228], MHC ΙΙa [(95%CI = ?0.32, 1.59), P = 0.168] and MHC IIx [(95%CI = ?1.49, 1.10), P = 0.749]; Vastus lateralis muscle: MHC I [(95%CI = ?0.38, 0.63), P = 0.586], MHC ΙΙa [(95%CI = ?0.50, 0.65), P = 0.783] and MHC IIx [(95%CI = ?1.08, 0.42), P = 0.355]. The findings of the present study indicate that the greater use of the dominant limbs for throwing actions and body movements in handball do not lead to altered MHC isoform composition compared to the non-dominant limbs.  相似文献   

14.
Abstract

The study investigated the effect of a school-based healthy lifestyles intervention on physical activity and dietary variables. In total 378 children (177 intervention, 201 control; age 9.75 ± 0.82 years (mean ± s)) took part in the 7-month intervention comprising: preparation for and participation in 3 highlight events (a dance festival, a walking event and a running event); an interactive website for pupils, teachers and parents; and vacation activity planners. Primary outcome measures were objectively measured physical activity (pedometers and accelerometers), endurance fitness and dietary variables. Multi-level modelling was employed for data analysis. The increase in physical activity was greater in the intervention group than the control group (steps: 1049 vs 632 daily steps each month; moderate to vigorous physical activity (MVPA) total: 4.6 min · day?1 · month?1 vs 1.3 min · day?1 · month?1; MVPA bouts: 5.4 min · day?1 · month?1 vs 2.6 min · day?1 · month?1; all P < 0.05). The increase in multi-stage fitness test distance was greater for intervention participants (46 vs 29 m · month?1 of intervention, group × month interaction, P < 0.05). There were no differences between groups in dietary variables, body composition, knowledge of healthy lifestyles or psychological variables. Thus an intervention centred around highlight events and including relatively few additional resources can impact positively on the objectively measured physical activity of children.  相似文献   

15.
This study aims to (1) determine whether isometric training at a short vs. long quadriceps muscle length affects concentric torque production; (2) examine the relationship between muscle hypertrophy and concentric torque; and (3) determine whether changes in fascicle length are associated with changes in concentric torque.

Sixteen men performed isometric training at a short (SL, n = 8) or a long muscle length (LL, n = 8). Changes in maximal concentric torque were measured at 30, 60, 90, 120, 180, 240 and 300 rad · s?1. The relationships between the changes in concentric torque, cross-sectional area, volume and fascicle length were tested.

Concentric torque increased significantly after training only in LL and at angular velocities of 30 and 120 rad · s?1 by 12–13% (P < 0.05). Muscle size increased in LL only, the changes were correlated (r = 0.73–0.93, P < 0.05) with the changes in concentric torque. Vastus lateralis (VL) fascicle length increased in both groups (5.4 ± 4.9%, P = 0.001) but the change was not correlated with changes in concentric torque in either group.

Isometric training-induced increases in muscle size and concentric torque were best elicited by training at long muscle lengths. These results highlight a clear muscle length dependence of isometric training on dynamic torque production.  相似文献   

16.
17.
Abstract

Individuals with impaired glucose tolerance (IGT) are at greater risk of developing diabetes than in normoglycaemia. The aim of this study was to examine the effects of 12-weeks exercise training in obese humans with IGT. Eleven participants (6 males and 5 females; 49±9 years; mean Body Mass Index (BMI) 32.4 kg · m?2), completed a 12-week brisk walking intervention (30 min per day, five days a week (d · wk?1), at 65% of age-predicted maximal heart rate (HRmax). Anthropometric measurements, dietary intake, pulse wave velocity (PWV, to determine arterial stiffness) and blood pressure (BP) were examined at baseline and post intervention. Fasting blood glucose, glycosylated haemoglobin, insulin, blood lipids, indices of oxidative stress and inflammation (lipid hydroperoxides; superoxide dismutase; multimeric adiponectin concentration and high-sensitivity C-reactive protein) were also determined. Post intervention, PWV (9.08±1.27 m · s?1 vs. 8.39±1.21 m · s?1), systolic BP (145.4±14.5 vs. 135.8±14.9 mmHg), triglycerides (1.52±0.53 mmol . L?1 vs. 1.31±0.54 mmol . L?1), lipid hydroperoxides (1.20±0.47 μM · L?1 vs. 0.79±0.32 μM · L?1) and anthropometric measures decreased significantly (P < 0.05). Moderate intensity exercise training improves upper limb vascular function in obese humans with IGT, possibly by improving triglyceride metabolism, which may subsequently reduce oxidative stress. These changes were independent of multimeric adiponectin modification and alterations in other blood biomarkers.  相似文献   

18.
Abstract

The objective of this study was to determine whether sprint performance is related to the mechanical (elongation – force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle – tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle – tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = ?0.567, P = 0.003). For the elongation – force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle – tendon unit.  相似文献   

19.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

20.
Abstract

In this study, we investigated the effect of ingesting carbohydrate alone or carbohydrate with protein on functional and metabolic markers of recovery from a rugby union-specific shuttle running protocol. On three occasions, at least one week apart in a counterbalanced order, nine experienced male rugby union forwards ingested placebo, carbohydrate (1.2 g · kg body mass?1 · h?1) or carbohydrate with protein (0.4 g · kg body mass?1 · h?1) before, during, and after a rugby union-specific protocol. Markers of muscle damage (creatine kinase: before, 258 ± 171 U · L?1 vs. 24 h after, 574 ± 285 U · L?1; myoglobin: pre, 50 ± 18 vs. immediately after, 210 ± 84 nmol · L?1; P < 0.05) and muscle soreness (1, 2, and 3 [maximum soreness = 8] for before, immediately after, and 24 h after exercise, respectively) increased. Leg strength and repeated 6-s cycle sprint mean power were slightly reduced after exercise (93% and 95% of pre-exercise values, respectively; P < 0.05), but were almost fully recovered after 24 h (97% and 99% of pre-exercise values, respectively). There were no differences between trials for any measure. These results indicate that in experienced rugby players, the small degree of muscle damage and reduction in function induced by the exercise protocol were not attenuated by the ingestion of carbohydrate and protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号