首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
认知功能障碍是神经系统疾病的重要特征表现,受诸多因素影响。肠道微生物在维持机体健康和多种疾病的发展中发挥作用,肠道微生物失衡与躯体运动能力和脑认知功能障碍,如阿尔茨海默病和帕金森病等神经退行性疾病关系密切。研究发现,运动干预可通过对肠道微生物的调节,建立肠-脑之间的联系,调控认知功能,改善神经退行性疾病,但不同方式的运动干预对肠道微生物的影响及其与认知功能的调节之间存在差异性。通过分析肠道微生物的生物学功能以及运动介导肠道微生物相关的改变与脑认知功能的关系,探讨肠道微生物在肠-脑神经联络以及运动调控肠道微生物改善认知功能的作用机理。  相似文献   

2.
神经功能障碍是导致脑认知能力衰退和神经退行性疾病的重要原因,但其内在的诱导机制尚不清楚。随着学界对肠道微生物研究的深入,发现肠道微生物在许多机体疾病的发展中扮演重要角色,而神经功能障碍亦不例外。肠神经系统与中枢神经系统的信息通路使得肠道微生物与神经功能建立了肠-脑轴间的联络,肠道微生态的变化可通过肠-脑轴间的联络而影响神经功能。研究发现,规律的运动可通过影响肠道微生态进而改善神经功能,抑制神经系统疾病,但其内在调节机制亦不明确,这可能与运动介导肠道微生物多样性、肠道免疫、肠道内分泌、肠道代谢以及运动改善肠-脑间神经联系和神经发生等机制有关。  相似文献   

3.
围绕鸢尾素介导运动干预神经精神疾病的最新研究进展,系统梳理鸢尾素通过作用于中枢神经系统促进产生神经营养因子、改善神经元功能、促进神经元增殖和神经发生、改善脑内能量代谢和氧化应激水平、降低神经毒性作用等功能,从外周途径阐述鸢尾素信号通路在运动改善抑郁症、阿尔茨海默病、帕金森综合征等神经精神疾病中的作用机制。发现鸢尾素在运动改善神经精神疾病中起着积极的调控作用,运动诱导的鸢尾素水平会随运动强度的不同而发生改变。肌肉与脑存在着一种以内分泌为主导的通路,骨骼肌作为一种内分泌器官可调控大脑健康和稳态,鸢尾素信号通路可介导运动对神经精神疾病的干预。运动引起的骨骼肌收缩产生的鸢尾素通过外周途径调控大脑的脑源性神经营养因子(BDNF)水平,进而对情绪、认知及神经功能发挥调控作用。  相似文献   

4.
下丘脑位于大脑底部,靠近内侧隆起,可传感神经元及整合神经胶质细胞,并将信号传导转化为生理功能,激活内分泌和神经系统,继而调节能量代谢和骨骼稳态。在下丘脑的AgRP/NPY神经元和POMC/CART神经元饮食调节体系中,下丘脑可刺激骨骼发生发展,最终将机体调至新的生理功能状态。此外,骨骼内分泌源激素骨钙素(osteocalcin,OCN)和脂质蛋白2(lipocalin-2,LCN2)能够反调节于下丘脑,改善下丘脑介导能量代谢水平。基于此,研究将从下丘脑-骨骼信号传导和骨骼-下丘脑信号传导两方面进行论述,并以能量代谢为穿梭靶点,以运动干预为手段,论述下丘脑调节能量代谢和骨骼反调节相关功能,阐述运动调节能量代谢和骨代谢之间的影响。  相似文献   

5.
神经营养因子(neurotrophic factors,NFs)缺失是导致脑功能衰退及神经退行性疾病的重要因素。帕金森病(Parkinson’s disease,PD)属于神经退行性疾病的一种,患者常表现出静息性肌肉震颤、运动性肌力缺失、运动迟缓、姿势僵硬不稳、步态异常等病症,其病理基础是中脑黑质致密部基底神经节多巴胺(dopamine,DA)能神经元丢失和DA减少。研究认为,运动可通过促进NFs的表达,促进DA能神经元的存活和DA的增多,改善PD的病理和病症。其机制可能与运动诱导NFs增多,进而调节PD病理相关分子酪氨酸羟化酶、N-甲基-D-天冬氨酸受体、突触素、α-突触核蛋白表达以及改善氧化应激、线粒体功能障碍和神经炎症反应等有关,但其中的确切调节机制尚未得以完全揭示。同时,运动模式、运动强度和运动时间等因素,也在运动调节NFs表达中影响干预的差异。运动产生的机械刺激,引发血液循环通过血脑屏障与脑内信号分子的变化,激活脑内NFs相关信号通路,从而促进NFs调节PD脑内的相关信号分子,改善或缓解PD。通过分析运动干预调控NFs的表达,进而作用于脑内PD病理相关分子,探讨NFs在运动调控PD病理中的作用及机制。  相似文献   

6.
7.
“肠漏”指的是在外界应激、高脂膳食等作用下,肠道通透性发生改变,使得肠道内革兰氏阴性菌发生移位,产生一系列的免疫激活。脂多糖(lipopolysaccharide,LPS)是肠道革兰氏阴性菌的主要组成部分,也是内毒素的主要活性成分。应激能够损坏肠粘膜屏障,增加肠道通透性,从而使LPS移位进入血液,在血清中由LPS结合蛋白运输至单核细胞和巨噬细胞,再与Toll样受体4(Toll like receptor-4,TLR4)结合后激活机体的神经免疫系统,相关脑区免疫系统的激活可能导致抑郁行为的发生。TLR4信号通路过度激活是抑郁的触发因素之一。适度运动可以弱化“肠漏-免疫激活-抑郁性神经炎症”,缓解海马神经发生、神经营养因子的减少。运动对“肠漏-免疫激活”的调控是治疗抑郁行为的潜在靶点。对该机制的探讨、梳理,有助于正确理解“肠-脑”对话机制在抑郁行为发生中的作用,也为运动干预抑郁行为提供更多的研究思路。  相似文献   

8.
肌少症是因年龄增长、身体活动减少等引发的骨骼肌质量减少(和)或功能减退的一种综合征。近年来,关于肌少症的研究备受关注,相关研究成果报道亦层出不穷,而关于肌少症与神经系统功能以及肠道之间的关系还少见全面系统报道。该研究对近年来国内外相关成果进行整理和归纳,全面了解肌少症与大脑机能、肠道微生态之间相互制约与促进关系,为进一步深入探讨基于运动干预的肌少症患者肌-脑-肠环路的内在机制,为肌少症患者的早期诊断与运动防治,提供理论依据和实践指导。  相似文献   

9.
目的:神经肌肉系统将训练刺激转换为长期适应性变化的能力是短跑运动训练可塑性的重要生物学基础。本文拟对短跑训练诱发神经肌肉功能重塑和代谢适应性变化相关分子机制和最新研究方法进行系统分析探讨。方法:采用最新文献研究和前瞻性分析相结合的方法,本文对短跑训练神经肌肉功能重塑及适应性代谢变化的关键影响因素进行分类整理和归纳分析,并对代谢组学应用于短跑训练机体适应性变化及疲劳发生的有效监控和干预进行研究展望。结果:脑源性神经营养因子(BDNF)等运动因子能够以旁分泌方式在调控肌肉卫星干细胞分化和神经肌肉系统功能重塑发挥关键作用;Ca2+离子通路及p53/PGC-1α、AMPK、p38MAPK等线粒体生物发生和能量代谢调节的关键分子是介导短跑训练通过表观遗传变化诱导运动表现提升和能量代谢稳态调控网络的重要靶点。根据专项特点有针对性地进行整合间歇训练、速度力量训练和连续循环训练的高强度功能性训练(HIFT),以均衡方式对神经肌肉及心血管多系统产生整体训练负荷刺激,能够更有效诱发BDNF表达和分泌,激活表观遗传学关键通路,在提高短跑训练生理适应性(氧利用率及能量代谢)及神经系统可塑...  相似文献   

10.
采用综述的方法阐述内脂素基因,内脂素代谢与相关代谢病,内脂素信号传导途径及其调节因素以及运动对内脂素的影响.内脂素与代谢病之间的相关机制仍不清楚,运动可能通过cAMP途径和PPARs分子参与内脂素表达的调控.  相似文献   

11.
细胞自噬的分子学机制及运动训练的调控作用   总被引:1,自引:0,他引:1  
细胞自噬(autophagy)是真核细胞中普遍存在的生命现象,是将细胞内变形、衰老或损伤的蛋白质和细胞器转运到溶酶体腔中消化降解的一种代谢过程。它的分子发生机制和信号调控机制非常复杂且高度保守,其中,mTOR和Beclin1作为各种调控通路的汇集点发挥了至关重要的作用。不同形式与强度的运动训练对细胞自噬也有一定的调节作用。一般来说,适宜强度的运动训练可通过上调细胞自噬水平,降解由于运动刺激所积累的损伤细胞器和代谢废物,为细胞再生提供一定的能量与合成底物,并在抑制自噬相关疾病的发生发展方面具有建设性作用。但过度训练则会因为细胞自噬的过度激活从而过多降解胞浆中的蛋白质和细胞器,导致细胞损伤或疲劳,甚至可能诱发自噬性细胞死亡。另外,运动训练还能通过调节与细胞自噬相关的信号通路对骨骼肌质量产生重要作用。  相似文献   

12.
运动预防和延缓阿尔茨海默病(Alzheimer’s disease,AD)的作用机制并非仅与β-淀粉样蛋白(β-amyloid peptides, Aβ)、tau蛋白过度磷酸化等特征性病理症状改变有关,其可能是运动多靶点效应协同改善大脑葡萄糖代谢紊乱和AD特征性病理症状的结果。运动可发挥其多靶点效应,激活脑源性神经营养因子和腺苷酸活化蛋白激酶、Sirtuins等信号分子,上调胰岛素信号通路活性,抑制神经炎症诱发的胰岛素抵抗,增加葡萄糖转运载体表达,改善糖酵解、三羧酸循环和氧化磷酸化等葡萄糖氧化分解代谢途径障碍,从而协同改善大脑糖代谢紊乱和AD特征性病理症状,发挥抗AD的作用。  相似文献   

13.
有关运动性疲劳产生的的机理及对它如何进行有效预防和消除的研究,一直是令运动医学工作者瞩目的前沿课题。运动性疲劳时出现的机体变化较为复杂,涉及物质代谢、神经、内分泌、免疫等各个方面。其中,神经递质、HPG轴与机体的物质代谢、运动能力及运动后的恢复密切相关。为此,从睾酮的生理作用和调节、神经递质、细胞因子和睾丸间质细胞的调控、反馈调节和运动对下丘脑-垂体-性腺轴的影响等层面,较系统地探讨运动与下丘脑-垂体-性腺轴之间的关系,为加快机体恢复,提高运动能力,以及科学训练提供理论依据。  相似文献   

14.
有关运动性疲劳产生的的机理及对它如何进行有效预防和消除的研究,一直是令运动医学工作者瞩目的前沿课题。运动性疲劳时出现的机体变化较为复杂,涉及物质代谢、神经、内分泌、免疫等各个方面。其中,神经递质、HPG轴与机体的物质代谢、运动能力及运动后的恢复密切相关。为此,从睾酮的生理作用和调节、神经递质、细胞因子和睾丸间质细胞的调控、反馈调节和运动对下丘脑-垂体-性腺轴的影响等层面,较系统地探讨运动与下丘脑-垂体-性腺轴之间的关系,为加快机体恢复,提高运动能力,以及科学训练提供理论依据。  相似文献   

15.
既往探讨运动神经保护效应生理机制的研究主要关注中枢神经系统的结构与功能对运动的适应性变化。近年来研究发现,骨骼肌在机体运动过程中能够通过多种途径从外周对中枢神经系统产生效益。以骨骼肌为外周靶点,结合运动干预的影响,全面总结骨骼肌介导运动神经保护效应的作用途径和分子机制,在此基础上梳理、总结出促进脑健康切实可行的运动干预策略。综述发现,运动时骨骼肌通过内分泌、能量代谢和抗炎等途径与大脑建立分子联系,是介导运动神经保护效应的主要作用途径;运动时骨骼肌能产生并分泌脑源性神经营养因子、鸢尾素、组织蛋白酶B、胰岛素样生长因子1、血管内皮生长因子、成纤维细胞生长因子21、瘦素、脂联素等肌细胞因子,这些肌细胞因子以激素的形式作用于大脑,产生神经保护效应;运动时骨骼肌会产生大量能量代谢产物,其中乳酸和α-酮戊二酸能透过血脑屏障作用于大脑,产生神经保护效应;运动状态下的骨骼肌可作为抗炎器官为机体创造良好的抗炎环境,通过诱导外周抗炎效应,缓解神经炎症,产生神经保护效应。  相似文献   

16.
运动对胰岛素受体及相关信号传导蛋白的影响   总被引:3,自引:0,他引:3  
运动训练已经在预防和治疗胰岛素抵抗和2型糖尿病方面得到成功的应用。经常参加运动训练的人骨骼肌胰岛素敏感性提高,运动会引起胰岛素受体(IR)、受体底物(IRS-1等)及受体后各相关信号传导蛋白(ERK1/2,P13-激酶,GLUT4等)发生相应的变化。然而,目前对运动训练可以提高胰岛素介导的信号传导机制尚未完全明了。  相似文献   

17.
过度训练病理机制研究进展   总被引:16,自引:1,他引:15  
1 过度训练与神经内分泌 近年来许多学者认为神经内分泌系统兴奋和抑制之间的不平衡是造成过度训练的主要机制。当运动应激超过机体的耐受能力时,引起神经内分泌系统的功能及调节障碍,机体产生一系列功能性甚至病理性改变。神经内分泌系统的这些功能改变涉及下丘脑垂体系统、交感肾上腺髓质系统和垂体肾上腺皮质系统。  相似文献   

18.
竞技运动与太极拳运动对人体有序状态的影响   总被引:3,自引:0,他引:3  
李忠京 《体育科学》2004,24(2):20-22
从人体生理学、现代医学、中医学和生物电磁学的综合角度对人体调控系统的构成进行了研究,发现人体的调控系统是由高级脑、人体生物场及经络系统和神经、内分泌、免疫调节系统构成。而竞技运动与太极拳运动在发挥人体调控系统功能对人体有序状态进行调节时,利用了不同的方式,主要表现在对人体生物场及经络系统功能的调节上的不同。提出两者的有机结合,在增强人体机能上能够更加安全,避免了多种伤病的发生,也大大提高了效率。  相似文献   

19.
本综述通过对PGC-1α依赖性信号传导的研究,描述不同持续时间、强度和模式的有氧运动,对调节骨骼肌线粒体生物合成的分子事件的影响。这对于治疗各种代谢性疾病以及优化运动训练计划至关重要。现有研究表明,30-90min的有氧运动无法提供额外的刺激来激活信号通路,以调节PGC-1α的翻译后修饰以及PPARGC1A的基因表达。而II型肌纤维募集的增加,导致运动强度显著影响线粒体的生物合成并伴随着明显的代谢变化,从而导致信号级联反应的激活和调控线粒体生物合成的基因的表达。因此,间歇性运动比连续运动能更有效地激活线粒体生物合成。在适应有氧训练的骨骼肌中,通过运动强度激活线粒体生物合成,主要与AMP激活的蛋白激酶/PGC-1α通路,PGC-1α调控的基因的表达,以及来源于由cAMP反应元件结合蛋白1相关转录因子及其共激活因子调控的诱导型可变启动子AP的PPARGC1A的表达有关。  相似文献   

20.
自噬是生物正常和病理状态下普遍存在的生命现象,在运动中骨骼肌蛋白质代谢平衡、氧化应激清除、肌纤维结构重塑及代谢废物清除等方面有重要作用。骨骼肌自噬调控以mTOR信号通路为主、p53、FOXO等信号通路为辅共同调节骨骼肌自噬活动。因此研究骨骼肌自噬调控的信号传导通路对提高运动时骨骼肌效率及维持骨骼肌内环境稳态有重要意义,同时对了解骨骼肌自噬调控机制、治疗与预防骨骼肌萎缩及其相关疾病提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号