首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper explores the trajectory tracking control problem for a wheeled mobile robot (WMR) in an environment with obstacles and unknown disturbances. A fixed-time extended state observer is presented, which is utilized to estimate unknown disturbances and improve the convergence speed of estimation errors. By introducing the obstacle avoidance cost, a model predictive controller with disturbance compensation is proposed to guarantee desired tracking performance in the presence of obstacles. The proposed method is analyzed for recursive feasibility and closed-loop system stability subject to unknown disturbances and obstacles. Finally, both simulation and experiment are conducted to express the satisfactory tracking effect of the developed approach.  相似文献   

2.
In this paper, the distributed iterative learning control for nonholonomic mobile robots with a time-varying reference is investigated, in which the mobile robots are with parametric uncertainties and are not fully actuated. Besides, the control gains of mobile robots are unknown. The leader is with a time-varying reference trajectory, and there is no need to assume that the time-varying reference is linearly parameterized by a set of known functions. A distributed control scheme is designed for each mobile robot based on a set of local compensatory filters designed by its neighborhood information. Stability analysis is established through a set of composite energy function. The uniform convergence of the consensus errors can be guaranteed. An example is given to show that our designed control law is effective.  相似文献   

3.
Finite-time stability involves dynamical systems whose trajectories converge to an equilibrium state in finite time. In this paper, we consider a general class of fully actuated mechanical systems described by Euler–Lagrange dynamics and the class of underactuated systems represented by mobile robot dynamics that are required to reach and maintain the desired trajectory in finite time. An approach known as the terminal sliding mode control (TSMC) involves non-smooth sliding surfaces such that, while on the sliding surface, the error states converge to the origin in finite time thus ensuring finite-time tracking. The main advantage of this control scheme is in fast converging times without excessive control effort. Such controllers are known to have singularities in some parts of the state space and, in this paper, we propose a method of partitioning the state space into two regions where the TSMC is bounded and its complement. We show that the region of bounded TSMC is invariant and design an auxiliary sliding mode controller predicated on linear smooth sliding surface for the initial conditions outside this region. Furthermore, we extend these results to address TSMC for underactuated systems characterized by the mobile robot dynamics. We demonstrate the efficacy of our approach by implementing it for a scenario when multiple dynamic agents are required to move in a fixed formation with respect to the formation leader. Finally, we validate our results experimentally using a wheeled mobile robot platform.  相似文献   

4.
移动机器人在避开单凸多边形障碍物过程中转角的确定   总被引:1,自引:0,他引:1  
范红 《科技通报》2004,20(1):18-20
提出了到单凸多边形障碍物的距离与转角之间的关系等式,并且仅用两个距离传感器就确定了移动机器人在绕开前侧单凸多边形障碍物时所需要的转角。该法新颖简单实用快捷,非常适用于实时避障,该关系等式的提出将给避障、规划及由凸多边形障碍物构成的未知环境的建模带来新的思路。  相似文献   

5.
This paper presents an integrated and practical control strategy to solve the leader–follower quadcopter formation flight control problem. To be specific, this control strategy is designed for the follower quadcopter to keep the specified formation shape and avoid the obstacles during flight. The proposed control scheme uses a hierarchical approach consisting of model predictive controller (MPC) in the upper layer with a robust feedback linearization controller in the bottom layer. The MPC controller generates the optimized collision-free state reference trajectory which satisfies all relevant constraints and robust to the input disturbances, while the robust feedback linearization controller tracks the optimal state reference and suppresses any tracking errors during the MPC update interval. In the top-layer MPC, two modifications, i.e. the control input hold and variable prediction horizon, are made and combined to allow for the practical online formation flight implementation. Furthermore, the existing MPC obstacle avoidance scheme has been extended to account for small non-apriorily known obstacles. The whole system is proved to be stable, computationally feasible and able to reach the desired formation configuration in finite time. Formation flight experiments are set up in Vicon motion-capture environment and the flight results demonstrate the effectiveness of the proposed formation flight architecture.  相似文献   

6.
This paper considers the tracking control problem for nonlinear Markov jump systems based on T–S fuzzy model approach with incomplete mode information. It is assumed that the mode transition rate matrix is not a priori knowledge and only partial information is available. Moreover, the mode where the system stays when operating is not fully accessible to the designed controller. In this incomplete mode information scenario, a hidden Markov model based mechanism is modified to simulate the mode deficiency mapping. The incomplete transition rate matrix is well defined in the form of a polynomial. Based on this, by constructing a polynomially parameter-dependent Lyapunov matrices and linear matrix techniques, sufficient conditions are established to ensure the stochastic stability and a prescribed tracking performance. The controller design scheme are presented by solving a series of LMIs. Examples are given in the end to illustrate the effectiveness of our proposed results.  相似文献   

7.
Benefiting from a newly designed switching function in terminal sliding manifold and novel uncertainty handling solutions, this article presents a low-cost neuroadaptive control scheme that can not only achieve the finite time tracking control of robot system with multiple uncertainties also circumvent the possible singularity. Specifically, for the kinematics parameter uncertainties involved, the proposed terminal sliding mode observer can ensure the actual position of end-effector be accurately estimated within a finite time. And then, a neural approximator is designed to handle the non-parameterizable lumped dynamics uncertainty, and a new low-cost neural adaptive mechanism is constructed to reduce the computational burden. Furthermore, it is proved that all closed-loop signals are bounded and the tracking error converges to an arbitrarily small adjustable neighborhood of the origin within a finite time. The comparison simulation example also confirms the effectiveness and superiority of the proposed control scheme.  相似文献   

8.
首先介绍了自行设计和开发的一种轮式移动机械手系统的硬件体系结构,然后提出移动平台和机械手的协调控制问题,考虑了机器人系统中的模型误差和外部干扰不确定因素,设计出鲁棒轨迹跟踪控制器。  相似文献   

9.
In this work, considering the roll dynamics and actuator dynamics, an observer-based control scheme for a vehicle is proposed. The proposal considers a nonlinear higher order sliding mode observer to estimate unmeasurable lateral velocity, roll angle and roll velocity. Using the observer information, a controller based on block control with sliding mode technique is designed for the reference trajectory tracking of the lateral and yaw velocities of the vehicle. The stability of the complete closed-loop system including zero dynamics is analyzed. The effectiveness of the proposed scheme is demonstrated through CarSim simulations.  相似文献   

10.
Practical time-varying output formation tracking problems with collision avoidance, obstacle dodging and connectivity maintenance for high-order multi-agent systems are investigated, and the practical time-varying output formation tracking error is controlled within an arbitrarily small bound. The outputs of followers are designed to track the output of the leader with unknown control input while retaining the predefined time-varying formation. Uncertainties are considered in the dynamics of the followers and the leader. Firstly, distributed extended state observers are developed to estimate the uncertainties and the leader’s unknown control input. A strategy of obstacle dodging is given by designing an ideal secure position for the followers which are in the threatened area of the obstacles. By constructing collision avoidance, obstacle dodging and connectivity maintenance artificial potential functions, corresponding negative gradient terms are calculated to achieve the safety guarantee. Secondly, a practical time-varying output formation tracking protocol is proposed by using distributed extended state observers and the negative gradient terms. Additionally, an approach is presented to determine the gain parameters in the protocol. The stability of the closed-loop multi-agent system with the protocol is analyzed by using Lyapunov stability theory. Finally, a simulation experiment is provided to illustrate the effectiveness of the obtained methods.  相似文献   

11.
基于颜色信息的多机器鱼并行视觉跟踪算法   总被引:2,自引:0,他引:2  
在多仿生机器鱼协作系统 (MRFS)中 ,如何快速、准确获取多机器鱼运动信息和环境信息是决策和控制的基础。介绍了MRFS中视觉子系统的实现及其多目标实时跟踪策略。结合机器鱼本体和场地背景的特征 ,提出了一种基于色度直方图和饱和度直方图的自适应阈值分割算法 ;同时 ,结合计算机并行处理技术 ,利用MMX指令和SSE指令 ,对整个跟踪算法进行了并行性优化。该视觉子系统已成功应用于MRFS中 ,能实时跟踪自由游动的机器鱼和多个障碍物  相似文献   

12.
四轮全向机器人是一个复杂的四维冗余系统,其轨迹跟踪控制性能极易受到模型不确定性及外界干扰的影响。针对这一问题,本文提出一种基于动力学模型的四轮全向机器人滑模轨迹跟踪控制方法。首先,通过输入变换将复杂的四维冗余机器人系统模型转化为三维模型,然后针对模型不确定性及外界扰动,采用滑模控制算法进行轨迹跟踪控制。仿真结果表明,该方法能够有效抑制外界干扰,同时降低模型不确定性的影响,机器人能够很好地跟踪期望轨迹,跟踪速度快,跟踪精度高。  相似文献   

13.
In this paper we investigate the cooperative tracking control problem with quantized time delay information exchange for a group of wheeled mobile robots networked through a connected graph modeling the underlying communication topology. A cooperative controller is proposed using a combination of backstepping technique, graph theory and neural network radial basis functions. We show, using the small gain theorem, that the states of each mobile robot in the group converge to and remain inside a tube centered around its assigned trajectory to form a desired geometric pattern whose centroid is assumed to move along a predefined trajectory. Experimental results on a group of three mobile robots forming a triangular shape are presented to demonstrate the good performance of the proposed cooperative controller.  相似文献   

14.
In this paper, a novel on-line observer-based trajectory tracking strategy for leader-follower formation of multiple nonholonomic mobile robots is developed. In the proposed strategy, a leader robot follows a certain trajectory whereas a number of followers track the leader as specified by a formation protocol. Unlike other techniques in the literature, a predefined trajectory is not required, and it can be changed on-line. Moreover, this strategy aims to have a fast transient response without showing undesired overshoots. To achieve this feature, a new observer is introduced. Based on the output of that observer, a control strategy with two components is derived. The first control component is responsible for tracking the desired trajectory, whereas the second control component is used to regulate the robot to its desired steady state position. The stability of the closed loop control system is investigated. Applications of the proposed observer-based controller to different case studies are presented to illustrate the effectiveness, robustness and applicability of the developed technique. To show the superiority of proposed controller, its performance in a trajectory tracking application is compared to that of a Lyapunov-based controller.  相似文献   

15.
This paper studies the coverage control problem of unicycle mobile robot network with external disturbance in the dynamic environment. The environment model is described by a time-varying density function, which is not known by the robot network. An observation method is proposed to approximate the unknown density function. It is proved that the density approximated by the robot network converge to the real density and the consensus of coefficient vector is realized in the robot network. Based on the approximated density function, a robust coverage control is successfully designed to drive the unicycle robot network to the optimal configuration and the coverage of the task region is optimized. Finally, the effectiveness of observation method and robust control are shown by simulation results.  相似文献   

16.
清洁机器人的自动避障控制系统   总被引:1,自引:0,他引:1  
本文介绍了基于全区域覆盖思想的清洁机器人自动避障行走控制系统的硬件电路设计和软件设计。根据超声波开关模块检测的障碍物信息,通过单片机把检测到的障碍物信息转化成控制信息,由步进电机带动两个驱动轮旋转,并结合旋转编码器的使用,实现清洁机器人的自动避障行走。  相似文献   

17.
The control problem of the cooperative motion of a two-link dual arm robot during handling and transportation of an object was studied in this paper. Since these types of robots are frequently preferred for hazardous applications such as transportation of radioactive materials and disposal of explosives, a robust non-chattering sliding mode controller (SMC) improved by a multiple-input multiple-output (MIMO) fuzzy logic unit was applied to the robot to track the desired trajectory with high accuracy and transport the load safely. In order to assess the performance of the proposed MIMO fuzzy sliding mode controller (MIMO-FSMC) in presence of parameter variations and external disturbances, a sudden load variation and noise were introduced to the robot system. If compared with classical SMC, tracking errors with smaller magnitudes and faster convergence to zero were obtained by using the proposed MIMO-FSMC. Numerical results suggest that this type of control method may safely be used for cooperative motion control of dual arm robots in load handling and transport applications in hazardous environments with high accuracy.  相似文献   

18.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

19.
This paper presents a solution to the problem of global exact output tracking for uncertain MIMO (multiple-input–multiple-output) linear plants with non-uniform arbitrary relative degree using output feedback sliding mode control. The key idea to overcome the relative degree obstacle is to generalize our previous hybrid estimation scheme to a multivariable version by combining, through switching, a standard linear lead filter with a non-linear one based on robust exact differentiators, achieving uniform global exponential practical stability and exact tracking.  相似文献   

20.
In this paper, a flatness-based adaptive sliding mode control strategy is presented to solve the trajectory tracking problem of a quadrotor. According to the differential flatness theory, the typical under-actuated quadrotor dynamics is transformed into a fully-actuated one. Based on this model, backstepping sliding mode controllers are designed to solve the trajectory tracking problem. To improve the robustness to disturbances, extended state observers are applied as a feedforward compensation of disturbances. Moreover, considering the high-order dynamics and possible instability caused by large observer gains, the adaptive method is applied to compensate for the estimation error. The effectiveness of the proposed control scheme is verified in simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号